Loading...
Search for: arbitrary-geometry
0.006 seconds

    Gaseous slip flow mixed convection in vertical microducts of constant but arbitrary geometry

    , Article Journal of Thermophysics and Heat Transfer ; Volume 28, Issue 4 , 1 October , 2014 , Pages 771-784 ; ISSN: 08878722 Sadeghi, M ; Sadeghi A ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Consideration is given to the buoyancy effects on fully developed gaseous slip flow in vertical microducts of constant but arbitrary geometry. The thermal boundary condition is assumed to be the constant wall heat flux of the first kind, H1. The rarefaction effects are treated using the first-order slip velocity and temperature jump boundary conditions. The method of solution being considered, in which the governing equations in cylindrical coordinates and three of the boundary conditions are exactly satisfied, is mainly analytical. The remaining slip boundary conditions on the duct wall are applied to the solution through the least-squares matching method. As an application of the method,... 

    Cloaking of irregularly shaped bodies using coordinate transformation

    , Article Optik ; Volume 197 , 2019 ; 00304026 (ISSN) Sidhwa, H. H ; Aiyar, R. P. R. C ; Kavehvash, Z ; Sharif University of Technology
    Elsevier GmbH  2019
    Abstract
    The inception of transformation optics has opened avenues for designing of a plethora of applications related to the propagation of electromagnetic waves in anisotropic media. In this paper, an algorithm is proposed using a coordinate transformation for the purpose of designing a cloak for a body having an arbitrary convex geometry. For the purpose of verification of the algorithm, a ray tracing process is carried out for an ellipsoid as well as an irregularly shaped body, both having axial symmetry. The ray tracing is carried out in a two dimensional plane since the transmitted ray vector would lie in the plane of incidence containing the incident ray vector and the normal vector to the... 

    Equivalent mechanical model of liquid sloshing in multi-baffled containers

    , Article Engineering Analysis with Boundary Elements ; Vol. 47, issue. 1 , Octobe , 2014 , p. 82-95 Ebrahimian, M ; Noorian, M. A ; Haddadpour, H ; Sharif University of Technology
    Abstract
    This study presents a method to determine an equivalent mechanical model (EMM) for multi-baffled containers with arbitrary geometries. The method is implemented for 2D and axisymmetric containers. The Laplace equation and Green's theorem are used to develop the fluid model and the boundary element method (BEM) is used to solve the fluid field governing equation. Moreover, a zoning method is utilized to model arbitrary arrangements of baffles in multi-baffled containers and a reduced order model is developed to model the free-surface sloshing. The exerted hydrodynamic pressure distribution, forces and moments on the walls of the container are determined based on the Bernoulli equation and a... 

    A polygonal finite element method for modeling arbitrary interfaces in large deformation problems

    , Article Computational Mechanics ; Volume 50, Issue 1 , 2012 , Pages 19-33 ; 01787675 (ISSN) Biabanaki, S. O. R ; Khoei, A. R ; Sharif University of Technology
    2012
    Abstract
    In this paper, a polygonal-FEM technique is presented in modeling of arbitrary interfaces in large deformations. The method is used to model the internal interfaces and arbitrary geometries using a uniform non-conformal mesh. The technique is applied to capture discontinuous deformations in the non-conformal elements, which are cut by the interface in a uniform regular mesh. In this approach, a uniform non-conformal mesh is decomposed into sub-elements that conform to the internal interfaces. The geometry of interface is used to produce various triangular, quadrilateral and pentagonal elements at the intersection of interface with regular FE mesh, in which the extra degrees-of-freedom are... 

    A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers

    , Article Engineering Analysis with Boundary Elements ; Volume 37, Issue 2 , 2013 , Pages 383-392 ; 09557997 (ISSN) Ebrahimian, M ; Noorian, M. A ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    This study presents a developed successive Boundary Element Method to determine the symmetric and antisymmetric sloshing natural frequencies and mode shapes for multi baffled axisymmetric containers with arbitrary geometries. The developed fluid model is based on the Laplace equation and Green's theorem. The governing equations of fluid dynamic and free surface boundary condition are also applied to proposed model. A zoning method is presented to model arbitrary arrangement of baffles in multi baffled axisymmetric tanks. The influence of each zone on neighboring zones is applied by introducing interface influence matrix which correlates the velocity potential of interfaces to their flux. By... 

    A generalized finite element method for modeling arbitrary interfaces in large deformation problems

    , Article Computational Plasticity XI - Fundamentals and Applications, COMPLAS XI, 7 September 2011 through 9 September 2011 ; September , 2011 , Pages 1306-1317 ; 9788489925731 (ISBN) Biabanaki, S. O. R ; Khoei, A. R ; Sharif University of Technology
    Abstract
    In this paper, a generalized-FEM technique is presented in modeling of arbitrary interfaces in large deformations. The method is used to model the internal interfaces and arbitrary geometries using a uniform non-conformal mesh. The technique is applied to capture independent deformations at both sides of separated element cut by the interface in a uniform regular mesh. In this approach, a uniform non-conformal mesh is decomposed into subelements that conform to the internal interfaces. The geometry of interface is used to produce various triangular, quadrilateral and pentagonal elements at the intersection of interface with regular FE mesh, in which the extra degrees-of-freedom are defined... 

    A 3D BEM model for liquid sloshing in baffled tanks

    , Article International Journal for Numerical Methods in Engineering ; Volume 76, Issue 9 , June , 2008 , Pages 1419-1433 ; 00295981 (ISSN) Dehghani Firouz Abadi, R ; Haddadpour, H ; Noorain, M. A ; Ghasemi, M ; Sharif University of Technology
    2008
    Abstract
    The present work aims at developing a boundary element method to determine the natural frequencies and mode shapes of liquid sloshing in 3D baffled tanks with arbitrary geometries. Green's theorem is used with the governing equation of potential flow and the walls and free surface boundary conditions are applied. A zoning method is introduced to model arbitrary arrangements of baffles. By discretizing the flow boundaries to quadrilateral elements, the boundary integral equation is formulated into a general matrix eigenvalue problem. The governing equations are then reduced to a more efficient form that is merely represented in terms of the potential values of the free surface nodes, which... 

    A fluid-structure interaction model for stability analysis of shells conveying fluid

    , Article Journal of Fluids and Structures ; Volume 26, Issue 5 , July , 2010 , Pages 747-763 ; 08899746 (ISSN) Firouz Abadi, R. D ; Noorian, M. A ; Haddadpour, H ; Sharif University of Technology
    2010
    Abstract
    In this paper, a fluid-structure interaction model for stability analysis of shells conveying fluid is developed. This model is developed for shells of arbitrary geometry and structure and is based on incompressible potential flow. The boundary element method is applied to model the potential flow. The fluid dynamics model is derived by using an inflow/outflow model along with the impermeability condition at the fluid-shell interface. This model is applied to obtain the flow modes and eigenvalues, which are used for the modal representation of the flow field in the shell. Based on the mode shapes and natural frequencies of the shell obtained from an FEM model, the modal analysis technique is... 

    Structured multiblock body-fitted grids solution of transient inverse heat conduction problems in an arbitrary geometry

    , Article Numerical Heat Transfer, Part B: Fundamentals ; Volume 54, Issue 3 , July , 2008 , Pages 260-290 ; 10407790 (ISSN) Azimi, A ; Kazemzadeh Hannani, S ; Farhanieh, B ; Sharif University of Technology
    2008
    Abstract
    The aim of this study is to develop iterative regularization algorithms based on parameter and function estimation techniques to solve two-dimensional/axisymmetric transient inverse heat conduction problems in curvilinear coordinate system. The multiblock method is used for geometric decomposition of the physical domain into regions with patched-overlapped interface grids. The central finite-difference version of the alternating-direction implicit technique together with structured body-fitted grids is implemented for numerical solution of the direct problem and other partial differential equations derived by inverse analysis. The approach of estimating unknown parameters and functions is...