Loading...
Search for: aqueous-suspensions
0.006 seconds

    Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets

    , Article Carbon ; Volume 66 , January , 2014 , Pages 395-406 Akhavan, O ; Ghaderi, E ; Abouei, E ; Hatamie, S ; Ghasemi, E ; Sharif University of Technology
    Abstract
    Asian red ginseng was used for green reduction of chemically exfoliated graphene oxide (GO) into reduced graphene oxide (rGO). The reduction level and electrical conductivity of the ginseng-rGO sheets were comparable to those of hydrazine-rGO ones. Reduction by ginseng resulted in repairing the sp 2 graphitic structure of the rGO, while hydrazine-rGO showed more defects and/or smaller aromatic domains. The ginseng-rGO sheets presented a better stability against aggregation than the hydrazine-rGO ones in an aqueous suspension. Whilst the hydrophobic hydrazine-rGO films exhibited no toxicity against human neural stem cells (hNSCs), the hydrophilic GO and ginseng-rGO films (as more... 

    Effect of morphology-based defect structure of ZnO nanostructures in photo-degradation of organic dye

    , Article Materials Research Society Symposium Proceedings ; Vol. 1672 , 2014 ; ISSN: 02729172 Shidpour, R ; Vosoughi, M ; Simchi, A ; Ghanbari, F ; Sharif University of Technology
    Abstract
    The fabrication of strong photocatalysts applied to the degradation of organic pollutants is necessary in environmental applications. In a single-stage method, acetate precursor and poly vinyl pyrolydine are used to produce ZnO nanostructures with various morphologies in annealing temperatures ranging from 300 °C to 900 oC. The physical properties of the prepared nanostructures were characterized by SEM, XRD and PL spectroscopy. The SEM images exhibit a variety of the as-prepared hexagonal zinc oxides including wires, rods, particles and porous network of welded particles of ZnO nanoparticles. The results of the photocatalytic degradation of methylene blue as an organic dye in aqueous... 

    An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes

    , Article Thermochimica Acta ; Volume 617 , October , 2015 , Pages 102-110 ; 00406031 (ISSN) Shahsavar, A ; Salimpour, M. R ; Saghafian, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Nanofluids containing Fe3O4 and carbon nanotubes nanoparticles emulsified and dispersed using gum arabic (GA) and tetramethylammonium hydroxide (TMAH) were made and characterized for potential use as heat transfer fluids. Due to the interaction between the TMAH and GA molecules, the magnetic nanoparticles and CNTs were physically adsorbed. This paper reports an experimental work on the effect of ultrasonication on thermal conductivity of this aqueous suspension. The characterization and surface morphology of the dried samples were studied by using XRD and TEM measurements. Experiments were conducted in the magnetic nanoparticles mass concentration range 0.494-2.428%,... 

    Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells

    , Article Carbon ; Volume 97 , 2016 , Pages 71-77 ; 00086223 (ISSN) Akhavan, O ; Ghaderi, E ; Shirazian, S. A ; Rahighi, R ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Graphene oxide foam (GOF) layers with thicknesses of ∼15-50 μm and density of ∼10 graphene oxide (GO) sheets/μm were fabricated by precipitation of chemically exfoliated GO sheets in an aqueous suspension at ∼80 °C under UV irradiation. Then, rolled GOFs with desirable scales were developed as electrically conductive 3D-scaffolds and applied in directional growth of neural fibers, through differentiation of human neural stem cells (hNSCs) into neurons under an electrical stimulation. X-ray photoelectron spectroscopy indicated that the UV irradiation resulted in partial deoxygenation of the layers. Scanning electron microscopy and Raman spectroscopy confirmed the presence of multilayer GO... 

    Stabilization of the suspension of zirconia microparticle using the nanoparticle halos mechanism: zeta potential effect

    , Article Journal of Dispersion Science and Technology ; Volume 37, Issue 1 , 2016 , Pages 6-13 ; 01932691 (ISSN) Keramati, H ; Saidi, M.H ; Zabetian, M ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    An experimental study has been conducted to investigate the effect of silica nanoparticle halos on the stability of the zirconia aqueous suspension. The results of turbidity measurements showed that addition of nanoparticles to the suspension increases the stability of the zirconia suspension for all pH values. The achieved stability refers to the formation of nanoparticle halos around the microparticles that can be observed by scanning electron microscopy (SEM) imaging. The best stabilization is achievable when zirconia microparticles are at the isoelectric point. The minimum stabilization occurs when microparticles have relatively high zeta potential and the force between micro and... 

    Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids

    , Article Thermochimica Acta ; Volume 549 , 2012 , Pages 87-94 ; 00406031 (ISSN) Baghbanzadeh, M ; Rashidi, A ; Rashtchian, D ; Lotfi, R ; Amrollahi, A ; Sharif University of Technology
    2012
    Abstract
    In this study, a hybrid of silica nanosphere/multiwall carbon nanotube (MWCNT) has been synthesized by wet chemical method at room temperature. The effect of MWCNTs, silica nanospheres and hybrid nanostructures (80% silica nanosphere/20% MWCNT and 50% silica nanosphere/50% MWCNT) on the thermal conductivity of distilled water has been investigated. SDBS was used as the dispersant to stabilize nanomaterials in the aqueous suspension and its concentration was 1.5 times of the concentration of nanomaterials. As results show, by increasing the concentration of nanomaterials, effective thermal conductivity of nanofluids increased. The most and the least enhancement in the effective thermal... 

    A study of the electrophoretic deposition of Bioglass® suspensions using the Taguchi experimental design approach

    , Article Journal of the European Ceramic Society ; Volume 30, Issue 14 , October , 2010 , Pages 2963-2970 ; 09552219 (ISSN) Pishbin, F ; Simchi, A ; Ryan, M. P ; Boccaccini, A. R ; Sharif University of Technology
    2010
    Abstract
    This paper presents a study of the Taguchi design method to optimise the rate of electrophoretic deposition (EPD) of Bioglass® particles from aqueous suspensions. The effect of Bioglass® concentration, pH and electric field was investigated. An orthogonal array of L16 type with mixed levels of the control factors was utilized. Multivariate analysis of variance (MANOVA) and regression analysis based on the partial least-square method were used to identify the significant factors affecting the deposition rate and its stability during constant-voltage EPD. It was found that the pH of the suspension significantly influences the deposition rate whereas the applied electric field has the smallest...