Loading...
Search for: antibacterial-effects
0.007 seconds

    Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities

    , Article Advanced Powder Technology ; 2020 Heidari, F ; Akbarzadeh, I ; Nourouzian, D ; Mirzaie, A ; Bakhshandeh, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The purpose of this study was to prepare and characterize an optimized system of tannic acid-loaded niosomes as a potential carrier for antibacterial and anti-biofilm delivery. The niosomal formulation was optimized using response surface methodology (RSM). The effects of the molar ratio of surfactant to cholesterol, drug concentration, and molar ratio of Span 60 to Tween 60 on particle size and drug entrapment efficiency of the niosomal nanocarrier were studied. The optimized nanoparticles were characterized in terms of the morphology, in vitro release profile, and antibacterial properties. Moreover, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC)... 

    Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures

    , Article Ceramics International ; Volume 46, Issue 15 , October , 2020 , Pages 24267-24280 Mesbah, M ; Sarraf, M ; Dabbagh, A ; Nasiri Tabrizi, B ; Paria, S ; Banihashemian, S. M ; Bushroa, A. R ; Faraji, G ; Tsuzuki, T ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Unlike gold and silver, aluminum shows a localized surface plasmon resonance (LSPR) over a wide spectral range from ultraviolet (UV) to the visible region. Herein, we demonstrate a new process to optically couple TiO2 nanotubes (NTs) with a high-strength aluminum substrate, to achieve a synergistic enhancement of photocatalytic antibacterial effects through controlled LSPR of aluminum. The high-strength aluminum substrate was produced by tubular channel angular pressing (TCAP). Their LSPR was tailored through the formation of superficial nano-concave arrays (NCAs) with desired concave diameters. A layer of aligned TiO2 NTs was fabricated on the surface of aluminum nano-concave arrays (Al... 

    Production of nanostructured Ni-Ti-Ag alloy by mechanical alloying

    , Article Advanced Materials Research ; Vol. 829 , 2014 , pp. 67-72 ; ISSN: 10226680 Rostami, A ; Sadrnezhaad, S. K ; Bagheri, G. A ; Sharif University of Technology
    Abstract
    Because of corrosion resistance and antibacterial effects, shape memory Ni-Ti-Ag alloy can be considered for different biomedical applications. Mechanical alloying is used to produce nanostructured Ni-Ti-Ag alloy from elemental powders. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) are used to characterize the product. Results show that after 1h milling, homogenous distribution of the elements occurs; while no intermetallic compounds is observed. After 3h milling, titanium dissolves in nickel to form amorphous and nanostructured solid phases. Peaks of B2 phase appear in the XRD pattern after the 3h milling of the powder mixture. Sintering of the 3h-milled... 

    Nanoparticle catalysts

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 23 , 2009 ; 00223727 (ISSN) Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    In this review, the importance of nanoparticles (NPs), with emphasis on their general and specific properties, especially the high surface-to-volume ratio (A/V), in many technological and industrial applications is studied. Some physical and chemical preparation methods for growing several metallic and binary alloy NP catalysts are reviewed. The growth and mechanism of catalytic reactions for synthesis of 1D nanostructures such as ZnO nanowires and multiwall carbon nanotubes (MWCNTs) are discussed. Gas-phase production with emphasis on dependence of catalytic activity and selectivity on size, shape and structure of NPs is also investigated. Application of NP catalysts in several... 

    Effects of SiC nanoparticles on synthesis and antimicrobial activity of TiCu nanocrystalline powder

    , Article Ceramics International ; Volume 46, Issue 1 , January , 2020 , Pages 114-120 Moniri Javadhesari, S ; Alipour, S ; Akbarpour, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Effects of SiC nanoparticles addition on synthesis and antibacterial properties of TiCu nanocrystalline powder prepared through high energy mechanical milling were studied. The results showed that the synthesis of TiCu powder in the presence of the nanoparticles was accelerated and after mechanical alloying for 20 h, a TiCu/SiC nanocrystalline powder with the crystallite size <5 nm, and 3.3% lattice micro-strain obtained. Further milling resulted in fully amorphous TiCu intermetallic alloy with more uniform distribution of SiC nanoparticles. The antibacterial activity of the synthesized powders was investigated by disk diffusion test. The TiCu/SiC nanocomposites showed enhanced antibacterial... 

    Effect of Cu2+ ion on biological performance of nanostructured uorapatite doped with copper

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 2845-2855 ; 10263098 (ISSN) Nikonam Mofrad, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Abstract
    Nanostructured copper-doped uorapatite (Cux.Ca(10X).(PO4)6.F2) having crystallite sizes of 19, 29, and 34 nm at x = 0:9, 0.4, and 0.0, respectively, was synthesized by planetary ball milling of CaO, P2O5, CaF2, and CuO powders. Specifications of the products were determined by Fourier-transform infrared spectroscopy, eld emission scanning electron microscopy, transmission electron microscopy, and X-ray di raction analyses. In-vitro studies and Mossman's Tetrazole Test (MTT) assays were also conducted by incubating Cux.Ca(10X).(PO6).F2 powder into Kokubo's Simulated Body Fluid (SBF) and against BT-20 cell, respectively, to determine bioactivity and biocompatibility of the materials....