Loading...
Search for: active-vibration-controls
0.01 seconds

    Optimal vibration control of rotors with an open edge crack using an electromagnetic actuator

    , Article JVC/Journal of Vibration and Control ; Volume 24, Issue 1 , 2018 , Pages 37-59 ; 10775463 (ISSN) Ebrahimi, A ; Heydari, M ; Behzad, M ; Sharif University of Technology
    SAGE Publications Inc  2018
    Abstract
    Vibration control, especially in cracked rotors, is an important factor that can prevent the occurrence of disastrous failures. In this paper, vibrational control of a cracked rotor with an electromagnetic actuator has been studied with a continuous model of flexural vibration of cracked rotors. The governing equation of motion for the rotor under the external excitation of the electromagnetic actuator, gravity, and unbalanced forces is presented. A control law for the optimal control method to minimize the vibration of the rotor or stress at the crack section was obtained. To this aim, two cost functions have been introduced, based on the overall vibration of the rotor and the maximum... 

    Reliability-based optimization of an active vibration controller using evolutionary algorithms

    , Article Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017, 26 March 2017 through 29 March 2017 ; Volume 10168 , 2017 ; 0277786X (ISSN); 9781510608214 (ISBN) Saraygord Afshari, S ; Pourtakdoust, S. H ; Fiberguide Industries; Frontiers Media; OZ Optics, Ltd.; Polytec, Inc.; The Society of Photo-Optical Instrumentation Engineers (SPIE) ; Sharif University of Technology
    SPIE  2017
    Abstract
    Many modern industrialized systems such as aircrafts, rotating turbines, satellite booms, etc. cannot perform their desired tasks accurately if their uninhibited structural vibrations are not controlled properly. Structural health monitoring and online reliability calculations are emerging new means to handle system imposed uncertainties. As stochastic forcing are unavoidable, in most engineering systems, it is often needed to take them into the account for the control design process. In this research, smart material technology is utilized for structural health monitoring and control in order to keep the system in a reliable performance range. In this regard, a reliability-based cost... 

    Utility of probability density evolution method for experimental reliability-based active vibration control

    , Article Structural Control and Health Monitoring ; Volume 25, Issue 8 , 2018 ; 15452255 (ISSN) Saraygord Afshari, S ; Pourtakdoust, S. H ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The utility of probability density evolution method for reliability-based active vibration control of a cantilevered flexible beam is experimentally investigated. In this respect, an optimal linear quadratic regulator (LQR) is utilized together with an observer to design an online full-state feedback controller. In order to design a well-performing controller and to simulate the controller performance, a system model is obtained via identification techniques. Reliability tests are consequently performed to verify the effectiveness of the presented reliability assessment method as a foundation for reliability-based control. Subsequently, a hybrid metaheuristic optimization scheme of... 

    Intelligent active vibration control of constrained manipulaors in robotic deburring

    , Article 2009 International Conference on Industrial Mechatronics and Automation, ICIMA 2009, Chengdu, 15 May 2009 through 16 May 2009 ; 2009 , Pages 76-80 ; 9781424438181 (ISBN) Daniali, M. M ; Vossoughi, G ; Sharif University of Technology
    2009
    Abstract
    In this paper, active vibration control of constrained manipulators used in automated deburring process is addressed. In order to suppress the random vibration generated due to the interaction force between robot end-effector and workpiece, an adaptive critic-based neurofuzzy controller is developed. This controller can adapt itself with different burr size. The control signal is fed to a piezoelectric actuator, which is mounted beside the workpiece. The piezoelectric actuator moves the workpiece to compensate the vibration. According to the intelligent behavior and system independent structure, the proposed design can be used for any industrial manipulator in various automated finishing... 

    Combining pole placement and online empirical mode decomposition methods to adaptive active control of structural vibration

    , Article Journal of Vibration and Acoustics, Transactions of the ASME ; Volume 141, Issue 4 , 2019 ; 10489002 (ISSN) Momeni Massouleh, S. H ; Hosseini Kordkheili, S. A ; Navazi, H. M ; Bahai, H ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2019
    Abstract
    Using a combination of the pole placement and online empirical mode decomposition (EMD) methods, a new algorithm is proposed for adaptive active control of structural vibration. The EMD method is a time-frequency domain analysis method that can be used for nonstationary and nonlinear problems. Combining the EMD method and Hilbert transform, which is called Hilbert-Huang transform, achieves a method that can be implemented to extract instantaneous properties of signals such as structural response dominant instantaneous frequencies. In the proposed algorithm, these estimated instantaneous properties are utilized to improve the pole-placement method as an adaptive active control technique. The... 

    Modeling and control of ionic polymer-metal composite structures

    , Article 13th International Congress on Sound and Vibration 2006, ICSV 2006, Vienna, 2 July 2006 through 6 July 2006 ; Volume 1 , 2006 , Pages 677-681 ; 9781627481502 (ISBN) Yousefi Koma, A ; Fazeli, R ; Sharif University of Technology
    2006
    Abstract
    Robotic devices are traditionally actuated by hydraulic systems or electric motors. However, in compact robotic systems, new actuator technologies are required. Ionic Polymer-Metal Composites (IPMCs) are attractive electroactivc polymer actuators because of their characteristics of large electrically induced bending, mechanical flexibility, low excitation voltage, low density, and ease of fabrication. A dynamic analytical model of IPMC is developed in this study. An RC model is employed based on time response results of a typical silver deposited IPMC. Results show that the electrical model is a suitable presentation of IPMC actuators. The model is tested with two experimental data of IPMC... 

    Hardware-in-the-loop optimization of an active vibration controller in a flexible beam structure using evolutionary algorithms

    , Article Journal of Intelligent Material Systems and Structures ; Vol. 25, issue. 10 , 2014 , p. 1211-1223 Nobahari, H ; Hosseini Kordkheili, S. A ; Afshari, S. S ; Sharif University of Technology
    Abstract
    In this study, active vibration control of a cantilevered flexible beam structure equipped with bonded piezoelectric sensor/actuators is investigated. The linear quadratic regulator technique together with an observer is adopted to design the controller as well as to provide the full-state feedback. Two different approaches are subsequently used for simultaneously integrated optimization of the controller and observer parameters. In the first approach, a linear experimental model of the system is obtained using identification techniques, and the optimization is then performed based on a computer simulation of the system. However, in the second approach, a hardware-in-the-loop optimization... 

    Intelligent vibration control of micro-cantilever beam in MEMS

    , Article 2011 IEEE International Conference on Mechatronics, ICM 2011 - Proceedings, 13 April 2011 through 15 April 2011, Istanbul ; April , 2011 , Pages 336-341 ; 9781612849836 (ISBN) Sarrafan, A ; Zareh, S. H ; Zabihollah, A ; Khayyat, A. A ; Sharif University of Technology
    2011
    Abstract
    Considerable attention has been devoted recently to vibration control using intelligent materials as sensor/actuator. An intelligent control technique using a neural network is proposed for vibration control of micro-cantilever beam with bonded piezoelectric sensor and actuator. Structure modal characteristic analysis is done to determine the optimal configuration of piezoelectric sensor and actuator. With the piezoelectric elements are surface-bonded near the same position to the fixed end of micro-cantilever beam, an optimal controller, linear quadratic Gaussian (LQG), and an intelligent strategy based on neural network are investigated. Finally, the simulation results are given to... 

    Experiment of new laboratory prototyped magneto-rheological dampers on a light commercial vehicle using neuro-fuzzy algorithm

    , Article JVC/Journal of Vibration and Control ; Volume 21, Issue 15 , 2015 , Pages 3007-3019 ; 10775463 (ISSN) Zareh, S. H ; Matbou, F ; Khayyat, A. A. A ; Sharif University of Technology
    SAGE Publications Inc  2015
    Abstract
    Magneto-rheological (MR) fluids consist of magnetic particles in carrying fluid. One of the drawbacks in using MR dampers in laboratory work is their price. At present, there is a compelling need for the production of the laboratory scale of MR fluids to lower their production cost. In this study, to show that the MR fluid is an applicable prototyped laboratory scale of single ended and mono-tube, MR dampers with a prototyped MR fluid are presented. The main features of produced MR fluid and dampers are simplifying in constructing and their low cost. These dampers are useful for laboratory research work. To illustrate the validity of the MR fluids, using this fluid, four MR dampers are made... 

    Different optimization criteria for vehicle seat suspension control: Position versus acceleration

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , August–September , 2010 , Pages 1053-1059 ; 9780791849033 (ISBN) Hashemnia, S ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    This paper addresses the effect of different optimization criteria for the control purpose of vehicle suspension. In the present study, active vibration control system for a 5 degree-of-freedom (DoF) pitch-plane suspension model with bounce and pitch motions is investigated. In the proposed vehicle model, the impact of the wheel-axle-brake assemblies' masses is also considered. The developed model is controlled using a fuzzy logic controller (FLC) to minimize the vibration of the driver's seat. The controller is designed to control the applied force to the seat. Furthermore, in order to determine the optimal value of fuzzy system parameters, genetic algorithm (GA) optimization search is used... 

    Control of vibration suppression of a smart beam by pizoelectric elements

    , Article 2nd International Conference on Environmental and Computer Science, ICECS 2009, 28 December 2009 through 30 December 2009, Dubai ; 2009 , Pages 165-169 ; 9780769539379 (ISBN) Azizi, A ; Durali, L ; Rad, F. P ; Zareie, S ; Sharif University of Technology
    Abstract
    Vibration control is an essential problem in different structure. Smart material can make a structure smart, adaptive and self-controlling so they are effective in active vibration control. Piezoelectric elements can be used as sensors and actuators in flexible structures for sensing and actuating purposes. In this paper we use PZT elements as sensors and actuator to control the vibration of a cantilever beam. Also we study the effect of different types of controller on vibration. © 2009 IEEE  

    Different optimization criteria for vehicle seat suspension control: Position versus acceleration

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 6 , 2009 , Pages 1053-1059 ; 9780791849033 (ISBN) Hashemnia, S ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper addresses the effect of different optimization criteria for the control purpose of vehicle suspension. In the present study, active vibration control system for a 5 degree-of-freedom (DoF) pitch-plane suspension model with bounce and pitch motions is investigated. In the proposed vehicle model, the impact of the wheel-axle-brake assemblies' masses is also considered. The developed model is controlled using a fuzzy logic controller (FLC) to minimize the vibration of the driver's seat. The controller is designed to control the applied force to the seat. Furthermore, in order to determine the optimal value of fuzzy system parameters, genetic algorithm (GA) optimization search is used... 

    Advanced two-step integrated optimization of actively controlled nonlinear structure under mainshock–aftershock sequences

    , Article JVC/Journal of Vibration and Control ; 2018 ; 10775463 (ISSN) Khansefid, A ; Bakhshi, A ; Sharif University of Technology
    SAGE Publications Inc  2018
    Abstract
    In this paper, an attempt is made to examine a new method for designing and applying the active vibration control system to improve building performance under mainshock–aftershock sequences. In this regard, three different structures are considered; 5-, 10-, and 15-story buildings. Seven mainshock–aftershock sequences are selected from the Iranian accelerogram database for analyzing the structures. By implementing an advanced two-step optimization method, buildings equipped with the active vibration control system (linear–quadratic regulator (LQR) algorithm) are designed to withstand all events of mainshock–aftershock sequences. In the first optimization step, a multi-objective optimization... 

    Advanced two-step integrated optimization of actively controlled nonlinear structure under mainshock–aftershock sequences

    , Article JVC/Journal of Vibration and Control ; Volume 25, Issue 4 , 2019 , Pages 748-762 ; 10775463 (ISSN) Khansefid, A ; Bakhshi, A ; Sharif University of Technology
    SAGE Publications Inc  2019
    Abstract
    In this paper, an attempt is made to examine a new method for designing and applying the active vibration control system to improve building performance under mainshock–aftershock sequences. In this regard, three different structures are considered; 5-, 10-, and 15-story buildings. Seven mainshock–aftershock sequences are selected from the Iranian accelerogram database for analyzing the structures. By implementing an advanced two-step optimization method, buildings equipped with the active vibration control system (linear–quadratic regulator (LQR) algorithm) are designed to withstand all events of mainshock–aftershock sequences. In the first optimization step, a multi-objective optimization... 

    Semi active vibration control of a passenger car using magnetorheological shock absorber

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Istanbul, 12 July 2010 through 14 July 2010 ; Volume 3 , 2010 , Pages 21-27 ; 9780791849170 (ISBN) Fellah Jahromi, A ; Zabihollah, A ; Sharif University of Technology
    2010
    Abstract
    A novel semi-active control system for suspension systems of passenger car using Magnetorheological (MR) damper is introduced. The suspension system is considered as a mass-spring model with an eight-degrees-of-freedom, a passive damper and an active damper. The semi-active vibration control is designed to reduce the amplitude of automotive vibration caused by the alteration of road profile. The control mechanism is designed based on the optimal control algorithm, Linear Quadratic Regulator (LQR). In this system, the damping coefficient of the shock absorber changes actively trough inducing magnetic field. It is observed that utilizing the present control algorithm may significantly reduce...