Loading...
Search for: active-micromixer
0.005 seconds

    Numerical Simulation and Characterization of a Micro-mixer with Moving Walls

    , M.Sc. Thesis Sharif University of Technology Omidvar, Ahmad Reza (Author) ; Saeedi , Mohammad Saeed (Supervisor) ; Sani, Mahdi (Supervisor)
    Abstract
    Recent advances in micro-technology are finding important applications especially in chemical and biological processes. In these applications, mixing has a profound importance. Due to the inherent low Reynold’s number flow in micro systems, diffusion mixing is the dominant mixing mechanism at these scales. This is in contrary to the high Reynold’s number ordinary applications where turbulent mixing plays the major role. There are two major classes of micro-mixers: passive and active. Passive micro-mixers rely on geometric features to enhance mixing. Active micro-mixers on the other hand, use external excitation to promote and control the rate of mixing. In this work, using numerical tools,... 

    Numerical Simulation and Analysis of Active Electro-Kinetic Micro-Mixer

    , M.Sc. Thesis Sharif University of Technology Maleki Bagherabadi, Kamyar (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Sani, Mahdi (Supervisor)
    Abstract
    The “Lab-on-a-Chip” is a micro-scale device which uses fluids as working medium and can handle number of functions such as sample preparation and transfer, separation, bio-sensing and detection. One of the important parts of these devices is micro-mixer, that should blend two fluid species in a short time with desirable mixing quality. Micro-mixers are classified as passive and active. By considering the micro-scale of mixers, turbulence phenomena cannot occur due to dominance of viscous forces, therefore the mixing only depends on molecular diffusion. This thesis consists of two main parts, in the first part algebraic multigrid has been studied and implemented in Rayan (in-house CFD code).... 

    Analysis and Design of an Electrokinetically-driven Micro-Mixer

    , M.Sc. Thesis Sharif University of Technology Anbari, Ali Mohammad (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    A Lab-On-A-Chip is a micro-scale system whic h utilizes some micro-scale components in order to implement detection tests on samples. One of the most important components of a lab-on-a-chip device is the micro-mixer, which is responsible for appropriately mixing of samples in a short period of time. The biggest problem relevant to mixing in micro scales is that since as the viscous forces are dominant in micro scale and dimensions are small, it is impractical to mix fluids via turbulence, and consequently mixing process is performed by diffusion mechanism. Two major strategies are being used in order to improve the mixing performance and two groups of micro-mixers, passive and active types,... 

    Numerical Simulation and Analysis of Electrokinetic Micromixer

    , M.Sc. Thesis Sharif University of Technology Raffiee, Amir Hossein (Author) ; Saidi, Mohammad Said (Supervisor)
    Abstract
    Lab-On-A-Chip is a micro-scale system which utilizes specific tools in order to operate detection tests on samples. One of the most important components of these devices is micromixers which is responsible for appropriate mixing of samples in short period of time. The biggest problem associated to the mixing in micro-scale is the regime that the flow takes during the process. Due to the small dimensions of micromixers the induced flow stream resides in the range of laminar flows and consequently the mixing is conducted solely by diffusion mechanism which is either time-taking or requires long micro-channel that causes the high cost of fabrication. In order to improve the mixing process two... 

    Active microfluidic micromixer design using ionic polymer-metal composites

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 371-375 ; 9781728115085 (ISBN) Annabestani, M ; Mohammadzadeh, H ; Aghassizadeh, A ; Azizmohseni, S ; Fardmanesh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In most of the microfluidic applications, it is necessary to have a mixed fluid from the beginning, but in microchannels, due to facing with low Reynolds flows, the fluids flow in the channel by the laminar regimes. Hence the mixing process is a challenging problem and researchers are trying to present fast and reliable micromixers. In this paper, using Ionic Polymer-Metal Composites (IPMCs), an active micromixer has been designed. To investigate the appropriateness of IPMC, using experimental and simulation tests, we show that the IPMC actuator is a potential candidate as an active element of microfluidic micromixers