Loading...
Search for: active-loss
0.009 seconds

    Application of a Modified NSGA Method for Multi-Objective Static Distributed Generation Planning

    , Article Arabian Journal for Science and Engineering ; Volume 36, Issue 5 , 2011 , Pages 809-825 ; 13198025 (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2011
    Abstract
    The characteristics of integrating distributed generation (DG) in a distribution network have changed. These electrical resources are used as an alternative energy source to the main grid. The technical and economical benefits of such units are achieved only when they are optimally sized and placed in the network. In this paper, a static mixed integer non-linear model for distributed generation planning is defined and solved using a modified NSGA method (Non-dominated Sorting Genetic Algorithm). Different DG technologies are considered and the objective functions for minimization are defined as the total active loss, investment and operational costs, and environmental pollution. The method... 

    Imperialist competition algorithm for distributed generation connections

    , Article IET Generation, Transmission and Distribution ; Volume 6, Issue 1 , January , 2012 , Pages 21-29 ; 17518687 (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    This study proposes an imperialist competition algorithm (ICA) to maximise the benefits of distribution network operators (DNOs) because of the existence of distributed generation (DG) units. The sum of active loss reduction and network investment deferral incentives has been considered as the objective function to be maximised in this study. The optimal location and size of DG units in the network are found considering various techno-economical issues. The application of the proposed methodology in the UK under current Ofgem financial incentives for DNOs is investigated. The ability of the proposed approach in finding the optimal solution is validated by comparing the obtained results with... 

    A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks

    , Article IEEE Systems Journal ; Volume 6, Issue 2 , 2012 , Pages 254-259 ; 19328184 (ISSN) Soroudi, A ; Aien, M ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    The rapid growth in use of renewable intermittent energy resources, like wind turbines (WTs) and solar panels, in distribution networks has increased the need for having an accurate and efficient method of handling the uncertainties associated with these technologies. In this paper, the unsymmetrical two point estimate method (US2PEM) is used to handle the uncertainties of renewable energy resources. The uncertainty of intermittent generation of WT, photo voltaic cells, and also electric loads, as input variables, are taken into account. The variation of active losses and imported power from the main grid are defined as output variables. The US2PEM is compared to symmetrical two point... 

    Possibilistic evaluation of distributed generations impacts on distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 26, Issue 4 , 2011 , Pages 2293-2301 ; 08858950 (ISSN) Soroudi, A ; Ehsan, M ; Caire, R ; Hadjsaid, N ; Sharif University of Technology
    Abstract
    In deregulated power systems, the distribution network operator (DNO) is not responsible for investment in distributed generation (DG) units, and they are just concerned about the best architecture ensuring a good service quality to their customers. The investment and operating decisions related to DG units are then taken by entities other than DNO which are exposed to uncertainty. The DNO should be able to evaluate the technical effects of these uncertain decisions. This paper proposes a fuzzy evaluation tool for analyzing the effect of investment and operation of DG units on active losses and the ability of distribution network in load supply at presence of uncertainties. The considered... 

    Efficient immune-GA method for DNOs in sizing and placement of distributed generation units

    , Article European Transactions on Electrical Power ; Volume 21, Issue 3 , 2011 , Pages 1361-1375 ; 1430144X (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper proposes a hybrid heuristic optimization method based on genetic algorithm and immune systems to maximize the benefits of Distribution Network Operators (DNOs) accrued due to sizing and placement of Distributed Generation (DG) units in distribution networks. The effects of DG units in reducing the reinforcement costs and active power losses of distribution network have been investigated. In the presented method, the integration of DG units in distribution network is done considering both technical and economical aspects. The strength of the proposed method is evaluated by applying it on a small and a realistic large scale distribution network and the results are compared with... 

    A possibilistic-probabilistic tool for evaluating the impact of stochastic renewable and controllable power generation on energy losses in distribution networks-A case study

    , Article Renewable and Sustainable Energy Reviews ; Volume 15, Issue 1 , 2011 , Pages 794-800 ; 13640321 (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper proposes a hybrid possibilistic-probabilistic evaluation tool for analyzing the effect of uncertain power production of distributed generations (DGs) on active losses of distribution networks. The considered DG technologies are gas and wind turbines. This tool is useful for distribution network operators (DNOs) when they are faced with uncertainties which some of them can be modeled probabilistically and some of them are described possibilistically. The generation pattern of DG units changes the flow of lines and this will cause change of active losses which DNO is responsible for compensating it. This pattern is highly dependent on DG technology and also on decisions of DG... 

    Multi objective distributed generation planning using a binary particle swarm optimization method

    , Article 2008 International Conference on Genetic and Evolutionary Methods, GEM 2008, Las Vegas, NV, 14 July 2008 through 17 July 2008 ; 2008 , Pages 140-146 ; 1601320698 (ISBN); 9781601320698 (ISBN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2008
    Abstract
    With the introduction of restructuring concepts to traditional power systems, a great deal of attention is given to utilization of distributed generation. Integration of DG units has been known as an alternative for distribution network reinforcement and purchasing energy from transmission network. Considering these facts, in the planning procedure of DG, determination of optimal sizing and sitting is a very important issue. This work presents a comprehensive framework for integration of distributed generations into a distribution network, regarding various technical and economical issues such as reduction of active power losses, environmental pollutions, investment and running costs while... 

    Multi-objective planning model for integration of distributed generations in deregulated power systems

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 3 , 2010 , Pages 307-324 ; 10286284 (ISSN) Soroudi, A. R ; Ehsan, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents a long-term dynamic multi-objective model for distributed generation investment. The proposed model optimizes three objectives, namely active losses, costs and environmental emissions and determines the optimal schemes of sizing, sitting of DG units and specially the dynamics of investment over the planning period. The Pareto optimal solutions of the problem are found using a GA algorithm and finally a fuzzy satisfying method is applied to select the optimal solution considering the desires of the planner. The solutions of Pareto optimal front are analyzed to extract general useful information for planners about the appropriate DG technologies and placement schemes. The... 

    Simulation of activity loss of fixed bed catalytic reactor of MTO conversion using percolation theory

    , Article Chemical Engineering Science ; Volume 66, Issue 23 , December , 2011 , Pages 6199-6208 ; 00092509 (ISSN) Izadbakhsh, A ; Khorasheh, F ; Sharif University of Technology
    2011
    Abstract
    In this investigation, a reactor model for prediction of the deactivation behavior of MTO's porous catalyst in a fixed bed reactor is developed. Effect of coking on molecular transport in the porous structure of SAPO-34 has been simulated using the percolation theory. Thermal effects of the reaction were considered in the model and the temperature profile of the gas stream in the reactor was predicted. The predicted loss in catalyst activity with time-on-stream was in very good agreement with the experimental data. The resulting coke deposition and gas temperature profiles along the length of reactor suggested a reaction front moving toward the outlet of the fixed bed reactor at the...