Loading...
Search for: active-fault-tolerant-control
0.009 seconds

    A unified framework for passive–active fault-tolerant control systems considering actuator saturation and L∞ disturbances

    , Article International Journal of Control ; 2017 , Pages 1-11 ; 00207179 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper presents a unified passive–active fault-tolerant control strategy to compensate the loss of actuators’ effectiveness. The proposed approach is capable of handling the system in pre- and post-fault diagnosis intervals by passive and active approaches, respectively. The stability of the designed system is independent of the accuracy of information provided by the fault detection and diagnosis unit, however, a precise estimation could improve the conservation. Actuator saturation and L∞ disturbances effects are considered in the design stage. The trade-off between maximising the domain of attraction and minimising the effects of L∞ disturbances is tackled by developing a non-constant... 

    A unified framework for passive–active fault-tolerant control systems considering actuator saturation and L ∞ disturbances

    , Article International Journal of Control ; Volume 92, Issue 3 , 2019 , Pages 653-663 ; 00207179 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This paper presents a unified passive–active fault-tolerant control strategy to compensate the loss of actuators’ effectiveness. The proposed approach is capable of handling the system in pre- and post-fault diagnosis intervals by passive and active approaches, respectively. The stability of the designed system is independent of the accuracy of information provided by the fault detection and diagnosis unit, however, a precise estimation could improve the conservation. Actuator saturation and L ∞ disturbances effects are considered in the design stage. The trade-off between maximising the domain of attraction and minimising the effects of L ∞ disturbances is tackled by developing a... 

    Multi-objective optimization in graceful performance degradation and its application in spacecraft attitude fault-tolerant control

    , Article Aerospace Science and Technology ; Volume 69 , 2017 , Pages 465-473 ; 12709638 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandib, M. F ; Sharif University of Technology
    Abstract
    Reducing the burden of the remaining actuators through decreasing the performance gracefully is an important field in active fault tolerant control. According to the literature, two important points have been identified in the works considering graceful performance degradation: 1) using single-objective optimization, 2) assuming an engineering insight into the performance of the faulty system. This paper has two contributions: First, it is shown that in some cases, single-objective optimization may not be able to provide a satisfactory solution for the problem. Second, a new systematic and general method is proposed to remove the need for the engineering insight. The proposed method is based... 

    Reducing the effects of inaccurate fault estimation in spacecraft stabilization

    , Article Journal of Aerospace Technology and Management ; Volume 9, Issue 4 , 2017 , Pages 453-460 ; 19849648 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandi, M ; Sharif University of Technology
    Abstract
    Reference Governor is an important component of Active Fault Tolerant Control. One of the main reasons for using Reference Governor is to adjust/modify the reference trajectories to maintain the stability of the post-fault system, especially when a series of actuator faults occur and the faulty system can not retain the pre-fault performance. Fault estimation error and delay are important properties of Fault Detection and Diagnosis and have destructive effects on the performance of the Active Fault Tolerant Control. It is shown that, if the fault estimation provided by the Fault Detection and Diagnosis (initial “fault estimation”) is assumed to be precise (an ideal assumption), the...