Loading...
Search for: 2d-material
0.005 seconds

    Third-order optical nonlinearity in two-dimensional transition metal dichalcogenides

    , Article Communications in Theoretical Physics ; Volume 70, Issue 3 , 2018 , Pages 344-360 ; 02536102 (ISSN) Khorasani, S ; Sharif University of Technology
    Abstract
    We present a detailed calculation of the linear and nonlinear optical response of four types of monolayer two-dimensional (2D) transition-metal dichalcogenides (TMDCs), having the formula MX2 with M = Mo, W and X = S, Se. The calculations are based on 6-band tight-binding model of TMDCs, and then performing a semi-classical perturbation analysis of response functions. We numerically calculate the linear and nonlinear surface susceptibility tensors with ωΣ = ωr + ωs + ωt. Both non-degenerate and degenerate cases are studied for third-harmonic generation and nonlinear refractive index, respectively. Computational results obtained with no external fitting parameters are discussed regarding two... 

    Analytical modeling of phosphorene-based NO2 gas sensor

    , Article International Journal of Modern Physics B ; Volume 33, Issue 14 , 2019 ; 02179792 (ISSN) Mansouri, E ; Karamdel, J ; Ahmadi, M. T ; Berahman, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    Phosphorene is a new two-dimensional material that has great potentials in Nano electronic application, so it has attracted more researchers' attention nowadays. Indeed, phosphorene is an interesting material in gas sensing, due to its high surface-to-volume ratio and its carrier mobility. Many studies have been reported on phosphorene gas sensing, but there is not enough study on analytical modeling of phosphorene gas sensing properties. In this research, by adopting data from experimental NO2-based gas sensor, an analytical model of the phosphorene gas sensing behavior is presented. Then, the experimental results of NO2 gas sensing are compared with the proposed model and acceptable... 

    Monoelemental two-dimensional iodinene nanosheets: A first-principles study of the electronic and optical properties

    , Article Journal of Physics D: Applied Physics ; Volume 55, Issue 13 , 2022 ; 00223727 (ISSN) Bafekry, A ; Stampfl, C ; Faraji, M ; Mortazavi, B ; Fadlallah, M. M ; Nguyen, C. V ; Fazeli, S ; Ghergherehchi, M ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Very recently, two-dimensional (2D) iodinene, a novel layered and buckled structure has been successfully fabricated (Qian et al 2020 Adv. Mater. 32 2004835). Motivated by this latest experimental accomplishment, for the first time we conduct density functional theory, first-principles calculations to explore the structural, electronic, and optical properties of monolayer, few-layer and bulk iodinene. Unlike the majority of monoelemental 2D lattices, iodinene is predicted to be an intrinsic semiconductor. On the basis of calculations using the generalized gradient approximation of Perdew-Burke-Ernzerhof for the exchange-correlation functional and the Heyd-Scuseria-Ernzerhof (HSE06)... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 3 , 2022 , Pages 1579-1588 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive... 

    On the performance of vertical MoS2 nanoflakes as a gas sensor

    , Article Vacuum ; Volume 167 , 2019 , Pages 90-97 ; 0042207X (ISSN) Barzegar, M ; Iraji zad, A ; Tiwari, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Despite their potential applications, a limited number of studies for synthesizing vertical MoS2 nanoflakes especially via CVD have been reported so far, which generally involve tedious complex- and/or multi-step growth processes. In this study, direct synthesis of vertical MoS2 nanoflakes grown on the SiO2/Si substrate during a rapid sulfidation process by CVD method has been reported. Material characterization was performed using Raman spectroscopy, XRD and FE-SEM. The XRD results indicated the dominant phase of 2H–MoS2 within the synthesized layers. The characteristic distance between the two dominant peaks of E1 2g and A1g in the Raman spectra confirms the multi-layered structure for... 

    Low loaded MoS2/Carbon cloth as a highly efficient electrocatalyst for hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; 2021 ; 03603199 (ISSN) Shaker, T ; Mehdipour, H ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Active edge sites of MoS2 nanosheets exhibit promising futures for hydrogen evolution reaction (HER), comparable with remarkable performances of highly cost platinum. However, 3D structures of MoS2 suffer from a lack of high mobility and unexposed active sites which lower the electrocatalytic activity. In this study, we show that there is a balance between increasing the active sites on the one hand and managing the charge transfer to facilitate the reaction on the other hand, and achieving this balance increases the efficiency of the electrocatalyst tremendously. For this purpose, we directly attached exfoliated MoS2 nanosheets onto carbon cloth (CC) substrate as a 3D network of conductive...