Loading...
Search for: soltani-nejad--mohammad
0.185 seconds

    Defining a Resiliency Index for Urban Roadway Networks

    , M.Sc. Thesis Sharif University of Technology Soltani Nejad, Fatemeh (Author) ; Nassiri, Habibollah (Supervisor)
    Abstract
    Urban transportation infrastructure due to the emergency forces' access during and after the earthquake is one of the most important arteries in the face of crisis. The resilience of this infrastructure is a crucial factor that should control before an event, such as an earthquake, to prioritize segments for improving their conditions and prevent system disruption. In this research, a model presents for evaluating urban roads' resilience based on four characteristics of robustness, redundancy, resourcefulness, and rapidity. The fuzzy inference is employed to construct the model. Due to the expert opinion dependence of these models, the AHP questionnaire is used to train the model. In this... 

    Unsteady supersonic aerodynamics based on BEM, including thickness effects in aeroelastic analysis

    , Article Journal of Fluids and Structures ; Volume 19, Issue 6 , 2004 , Pages 801-813 ; 08899746 (ISSN) Soltani, N ; Esfahanian, V ; Haddadpour, H ; Behbahani Nejad, M ; Sharif University of Technology
    2004
    Abstract
    A general three-dimensional aeroelastic solver is developed based on coupled finite element and boundary element methods and applied to investigate the flutter boundaries in supersonic flows. The boundary element method is applied to three-dimensional unsteady supersonic potential flow as the aerodynamic model and coupled with the finite element method for structural modelling, in order to construct the system of aeroelastic equations. The aeroelastic equations are solved for the flutter prediction using the frequency domain approach. Flutter boundaries for two types of wing planforms at supersonic speeds are determined and compared with the existing experimental results and previous... 

    Characterization of V2O5 Spent Catalyst & Feasibility Study of its Regeneration

    , M.Sc. Thesis Sharif University of Technology Soltani Nejad, Mohammad (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor) ; Farzami, Faezeh ($item.subfieldsMap.e)
    Abstract
    In this study, at first the V2O5 spent catalysts were characterized. The aim was to identifying whether these catalyst may be regenerated. Then, for feasibility study of them, three methods were applied: washing, diffusion and milling the spent catalysts for their subsequent reproduction. A variety of techniques such as XRD, XRF, AAS, TPR and TPO were applied in order to identify factors contributing in vanadium pentoxide catalysts deactivation. The results showed that approximately all of pollutants caused their performance deterioration, while they still have some active phases. Then, the polluted catalysts were washed (their yield increased from 43% to 72.2%). In the underside of the... 

    Experimental Study of the Pressure Distribution on the Surface of an Infinite Wing Influenced by Different Sweep Angles

    , M.Sc. Thesis Sharif University of Technology Tirandaz, Mohammad Rasoul (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    A series of wind tunnel tests were performed to examine the effects of wing sweep and wing tip vortices on the pressure distribution of the upper surface of three wings with sweep angles of 23,33 and 40 degrees. The wing section had a laminar flow airfoil similar to that of NACA 6-series airfoils. All tests, were conducted at a chord Reynolds number of 8×〖10〗^5, and for a range of angle of attack -2 to14 degree. Generation of Wing tip vortices are eliminated by placing an End-plate on the wing tip. Static pressure distributions over the upper surface of the wing at three chordwise direction and at one spanwise direction along the quarter chord line are obtained. The results show that the... 

    Experimental Investigation of wake flow of a Supercritical Airfoil in Transonic Regime

    , M.Sc. Thesis Sharif University of Technology Abdi, Mohammad Ali (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Transonic flow study is important due to its vast applications. Supercritical airfoils are designed for transonic flow to postpone drag divergence and reduce the strength of shock. This type of airfoils are chiefly used in modern commercial airplanes because of their low drag in transonic regime and, as a result, reduction in their fuel consumption. Using supercritical airfoils needs accurate investigation of flow field due to several influential factors such as specific geometry, nonlinear nature of flow phenomena, and compressibility effects. However, the availability of experimental and numerical data for supercritical airfoils is less than that of the conventional ones. Thus,... 

    Non-Linear One-dimensional Dynamic Gas Turbine Simulation

    , M.Sc. Thesis Sharif University of Technology Jahanmardi, Fariba (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    A new one-dimensional, time dependent aerothermodynamic mathematical model and computer simulation of the gas turbine engine has been developed and is introduced herein. This code simulates the transient and dynamic operation of the gas turbine engine bye solving conservation equations, expressed as one dimensional, time dependent Euler equations, with turbomachinery source terms. The various component models, which provide the turbomachinery source terms to Euler equations, are described. Bye incorporating both explicit and implicit equation solvers, transient simulation of the gas turbine engine can be conducted efficiently while maintaining the capability of simulating dynamic events.... 

    Investigation on Novel Methods of Precious Metals Recovery from Spent Catalysts

    , M.Sc. Thesis Sharif University of Technology Hassan Nejad, Hesam (Author) ; Kazemeini, Mohammad (Supervisor)
    Abstract
    High demand and price and restricted availability of Platinum Group Metals (PGMs) have made platinum recovery a major field of study for researchers and industries. Various methods have been introduced for this purpose. Ion exchange, leaching and liquid-liquid extraction (LLE) are just a few examples. Nowadays Solvent Extraction (SX) is one of the most challenging areas of study for platinum recovery from spent catalysts due to its simplicity and optimum cost. In this study, the commercial spent catalyst’s platinum was dissolved in aqua-regia after XRF analysis. Then it was extracted by the organic material Trioctylphosphineoxide diluted in toluene in the presence of Alkaline metal salts.... 

    Experimental Investigation of Buzz Frequency on an Axisymmetric Supersonic Air Intake Using Pressure Distribution on the Wind Tunnel Wall

    , M.Sc. Thesis Sharif University of Technology Bagheri, Maryam (Author) ; Soltani, Mohammad Reza (Supervisor) ; Farahani, Mohammad (Co-Advisor)
    Abstract
    Supersonic intakes with mixed compression has an appropriate performance in the critical point, but in the subcritical performance, when inlet mass flow rate is reduced to a certain amount, a self-sustained instability occurs in the flow. In this case, instability appears in the form of shock waves system oscillation which is called Buzz phenomenon. An axisymmetric supersonic air intake with mixed compression which is designed for a Mach number of 2 has been investigated experimentally in order to study buzz frequency. The intake has been experimented in different Mach numbers, angles of attack and mass flow rates. Besides, the intake with wind tunnel wall has been modeled and analyzed in... 

    Experimental Investigation of Pressure Distribution in the Wind Tunnel Contarection and Preventation of Probable Separation

    , M.Sc. Thesis Sharif University of Technology Mirzaei, Mohsen (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Contraction sections are an integral part of all wind tunnels, whether designed for basic fluid flow research or model testing. The location of the contraction, just upstream of the test section, makes it very important to achieve a high quality contraction design. The effect of a contraction on unsteady velocity variations is significant to increase the mean velocity. Furthermore, contraction has a suitable role on the turbulence reduction in a wind tunnel. The contraction itself further reduces the turbulence in terms of percentage of the wind speed. This is due to the increase of the wind speed by a factor equal to the contraction ratio. In this research, to investigation flow quality in... 

    Experimental Investigation of the Effects of Suction and Wall Porosity on the Surface Pressure and Aerodynamic Forces in Transonic Wind Tunnel

    , M.Sc. Thesis Sharif University of Technology Amiri, Kaveh (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Transonic speed is one of the most important flight regimes. There are two main significances related to it. First, all of the supersonic air vehicles should pass through this regime to reach to their final speed. Second, nowadays most of the commercial airplanes fly in nearsonic speeds. According to nonlinear nature of the flow through the speeds, the related researchers haven’t been successful in development of a comprehensive theory as well as subsonic and supersonic ones. So, transonic flow is one of the most critical regimes in wind tunnel testing. In order to eliminate the shock-boundary layer interaction and wave cancellation, perforated walls and side suction are used in test section... 

    Study of Reduced Frequency Effects on Wind Tunnel Wall Pressure for a Plunging Airfoil

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Zeynab (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    The unsteady phenomena occur in rotors of helicopters, wind turbines and compressors. Investigation of the unsteady flow is a very important test, since it can affect and restrict the performance of rotors of helicopters and wind turbine's blades when operating at high angles of attack. Dynamic tests, such as pitching and plunging oscillations are one of the best methods for studying these phenomena due to the complexity of the unsteady flows. In analyzing the results of dynamic tests one must consider the interference effects of wind tunnel walls. Different investigations show that in dynamic tests, the interference effects of flow field around the model, wind tunnel walls and support of... 

    Experimental Investigation of the Effects of Canard Position on the Flowfield Over the Wing of a Model

    , M.Sc. Thesis Sharif University of Technology Izadkhah, Mohammad (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    The analysis results of air combat simulations explain fighters succeed at close air combat that are super maneuverable and at high angle of attack controllable. Closed-coupled delta wing/canard configurations play an important role in modern aircraft design. These configurations offer high trimmed lift, improved agility and maneuverability as well, as a potential for increased lift-to drag ratio, all of which make them attractive to study. Experiments were carried out in a subsonic closed circuit wind tunnel over a delta wing model under the influence of canard. Canard was set in two different vertical positions, high and mid, with respect to the wing location. Flowfield measurements were... 

    Experimental Investigation of Reduced Frequency Effects on the Wake of an Airfoil in Plunging Motion

    , M.Sc. Thesis Sharif University of Technology Dallali, Maryam (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Wake aerodynamic of plunging airfoils have received less attention than the other unsteady phenomena. An experimental investigation was carried out to study the unsteady characteristics of flow field behind a model of a plunging airfoil in various conditions. The model has 0.25cm chord and is the 16m section of a 660kW wind turbine blade. All tests were conducted in the subsonic closed circuit wind tunnel in Iran. Invariable parameters were plunging amplitude, mean angle of attack and plunging frequency. The Wakes of plunging airfoil can be characterized as drag-producing, neutral, or thrust-producing .Our preliminary results show that the structure of vortex in the wake for the plunging... 

    Experimental Investigation of the Roughness Effects on the Pressure Distribution and Stationary Crossflow Instability over a Swept wing

    , M.Sc. Thesis Sharif University of Technology Damghani, Hamid (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract

    Wind tunnel experiments are conducted to evaluate surface pressure distribution over a semi span swept wing with sweep angle of 33 degrees. The wing section has a laminar flow airfoil similar to that of NACA 6-series airfoils. The tests were conducted at speeds ranging from 50 to 70m/s with and without surface roughness. Surface static pressure was measured on the wing upper surface at three different chordwise rows located at the inboard station, (section 1, 2y/b=0.2), middle station, (section 2, 2y/b=0.43), and outboard station, (section 3, 2y/b=0.78). The differences between pressure distributions on the three sections of the wing were studied and the experimental results showed that... 

    Unstaedy Boundary Layer Measurement over an Airfoil in Plunging Motion

    , M.Sc. Thesis Sharif University of Technology Abdollahi, Rezvan (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    An experimental investigation of unsteady boundary layer over a wind turbine blade conducted in a subsonic wind tunnel. The experiment performed at different positions along the airfoil chord. Model was oscillated with amplitude of ±5 cm. Reynolds number, based on airfoil chord, ranged 3˟105 upto 6.5˟105 and the reduced frequency ranged from 0.0055 to 0.0981. Velocity profile measured with a total pressure rake. The data were reduced via a low-pass filter. Increasing the reduced frequency, the velocity profile increases the level on turbulence fluctuation and becomes more attached to the surface.

     

    Investigation of the Effects of Reduced Frequency on the Surface Pressure of a Supercritical Airfoil in Transonic Regime

    , M.Sc. Thesis Sharif University of Technology Vaziri, Ehsan (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Supercritical airfoils are designed for transonic flow to reduce the strength of shock and its drag. These type of airfoils are used in design and construction of commercial airplanes because of their low drag in transonic regime and, as a result, a reduction in fuel consumption. Using supercritical airfoils needs accurate investigation of flow field due to several influential factors such as their specific geometry, nonlinear nature of flow phenomena, and compressibility effects. However, the availability of experimental and numerical data for supercritical airfoils is less than that for conventional airfoils. Thus, conducting experimental tests is essential for understanding of flow field... 

    Experimental Investigation of the Effect of the Bleed Slant Angle on the Performance and Stability of a Supersonic Air Intake

    , M.Sc. Thesis Sharif University of Technology Abedi, Mahdi (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    In the study of supersonic air intakes, two important issues including performance and stability are considered. In these types of intakes, when inlet mass flow rate is reduced to a specified amount, a self-sustained instability called Buzz phenomenon occurs. During this phenomenon, shocks and expansion waves oscillate ahead of the intake that will degrade the performance considerably due to the periodic pressure fluctuations inside the intake. In the current study, a supersonic axisymmetric air intake with mixed compression which has designed for a free stream Mach number of 2.0 has been tested were conducted for free stream Mach numbers of 1.8, 2.0, and 2.2, and the results were analyzed... 

    Experimental Investigation of Pressure Distribution on the Surface of a Supercritical Airfoil in Transonic Regime

    , M.Sc. Thesis Sharif University of Technology Talebi, Masoud (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    Transonic flow study is important due to its vast applications. Supercritical airfoils are designed for transonic flow to postpone drag divergence and reduce the strength of shock. This type of airfoils are chiefly used in modern commercial airplanes because of their low drag in transonic regime and, as a result, reduction in their fuel consumption. Using supercritical airfoils needs accurate investigation of flow field due to several influential factors such as specific geometry, nonlinear nature of flow phenomena, and compressibility effects. However, the availability of experimental and numerical data for supercritical airfoils is less than that of the conventional ones. Thus,... 

    Experimental Study of the Effect of Bleed Location on Performance and Stability of an Axisymmetric Supersonic Mixed-Compression Inlet

    , M.Sc. Thesis Sharif University of Technology Daliri, Abbas (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    For supersonic inlets with reduction of mass flow ratio to a specified value self-induced oscillations know as Buzz would occure. Study and suppression of these oscillations are categorized in the field of inlet stability. In this work performance and stability of a supersonic inlet is studied experimentaly. Also a flow control mean is examined for stability and performance improvement. Investigation of the effect of bleed location as a key parameter for this flow control method is the main goal of this study. The model used is an axisymmetric mixed compression inlet. Experiments were done in 3 freestream Mach Numbers of 1.8, 2.0 and 2.2 with application of bleed and in no-bleed condition.... 

    Experimental Investigation of the Effect of Boundary Layer Suction on the Performance of a Supersonic Air Intake

    , M.Sc. Thesis Sharif University of Technology Honaker, Zahra (Author) ; Soltani, Mohammad Reza (Supervisor)
    Abstract
    An extensive wind tunnel tests were conducted on an axisymmetric supersonic inlet at free stream Mach numbers from 1.8 to 2.2, and at different values of mass flow rates. For each test, pressure distributions over the inlet spike was measured and the flow was visualized by means of the shadowgraph system and a high speed camera to obtain main performance characteristics of the inlet during its stable and unstable operations. As the Mach number is increased the pressure recovery is reduced, but maximum value of the mass flow rate is increased. The results of the stable operation of the inlet showed that, variations of the mass flow affects the surface pressure over the entire surface of the...