Loading...
Search for: sarmadi--m
0.02 seconds

    Investigation of the adhesive characteristics of polymer-protein systems through molecular dynamics simulation and their relation to cell adhesion and proliferation

    , Article Integrative Biology (United Kingdom) ; Volume 8, Issue 12 , 2016 , Pages 1276-1295 ; 17579694 (ISSN) Shamloo, A ; Sarmadi, M ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    Protein adhesion is a prevalent, however, intricate phenomenon that occurs immediately after exposure of a biomaterial to the biological system. A study on the adhesive characteristics of biomaterial-protein systems has encountered serious hurdles as experimental methods cannot properly capture the initial stages of protein adhesion, taking place within nano/picoseconds. This propels research studies toward utilizing computational approaches to gain an understanding of the interactions between different proteins and biomaterial surfaces. Herein, we use molecular dynamics (MD) modeling, as the computational framework, to study the adhesive characteristics of different biomaterial-protein... 

    Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres

    , Article International Journal of Pharmaceutics ; Volume 537, Issue 1-2 , 2018 , Pages 278-289 ; 03785173 (ISSN) Shamloo, A ; Sarmadi, M ; Aghababaie, Z ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Herein, a hybrid hydrogel/microsphere system is introduced for accelerated wound healing by sustained release of basic fibroblast growth factor (bFGF). The hydrogel is composed of a mixture of PVA, gelatin and chitosan. The double-emulsion-solvent-evaporation method was utilized to obtain microspheres composed of PCL, as the organic phase, and PVA, as the aqueous phase. Subsequently, various in-vitro and in-vivo assays were performed to characterize the system. BSA was used to optimize the release mechanism, and encapsulation efficiency in microspheres, where a combination of 3% (w/v) PCL and 1% (w/v) PVA was found to be the optimum microsphere sample. Incorporation of microspheres within... 

    A modified molecular structural mechanics model for the buckling analysis of single layer graphene sheet

    , Article Solid State Communications ; Volume 225 , 2016 , Pages 12-16 ; 00381098 (ISSN) Firouz Abadi, R. D ; Moshrefzadeh Sany, H ; Mohammadkhani, H ; Sarmadi, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this paper the classical molecular structural mechanics model of graphene is modified to improve its accuracy for the analysis of transverse deformations. To this aim, a sample graphene sheet under a uniform pressure is modeled by both molecular dynamics and molecular structural mechanics methods. The sectional properties of the beam element, by which the covalent bonds are modeled, are modified such that the difference between the results of the molecular mechanics model and molecular dynamics simulation is minimized. Using this modified model, the buckling behavior of graphene under a uniform edge pressure is investigated subjected to different boundary conditions for both zigzag and...