Loading...
Search for: ranjbar--s
0.005 seconds

    Modification of the electrode surface by ag nanoparticles decorated nano diamond-graphite for voltammetric determination of ceftizoxime

    , Article Electroanalysis ; Volume 28, Issue 3 , 2016 , Pages 469-476 ; 10400397 (ISSN) Shahrokhian, S ; Ranjbar, S ; Ghalkhani, M ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    A modified glassy carbon electrode with a film of nano diamond-graphite nano mixture decorated with Ag nanoparticles (AgNPs-NDG/GCE) was constructed and used for sensitive voltammetric determination of ceftizoxime (CFX). Morphology of AgNPs-NDG/GCE has been examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Experimental variables such as deposited amount of the modifier suspension, pH of the supporting electrolyte and accumulation potential and time were optimized by monitoring of CV and LSV responses of CFX. The results illustrate that AgNPs-NDG/GCE exhibits an excellent electrocatalytic effect in the electro-oxidation of CFX that leads to a considerable... 

    Aptamer immobilization on amino-functionalized metal-organic frameworks: an ultrasensitive platform for the electrochemical diagnostic of Escherichia coli O157:H7

    , Article Analyst ; Volume 143, Issue 13 , 2018 , Pages 3191-3201 ; 00032654 (ISSN) Shahrokhian, S ; Ranjbar, S ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Herein, we report the development of an electrochemical biosensor for Escherichia coli O157:H7 diagnostic based on amino-functionalized metal-organic frameworks (MOFs) as a new generation of organic-inorganic hybrid nanocomposites. The electrical and morphological properties of MOFs were enhanced by interweaving each isolated MOF crystal with polyaniline (PANI). Subsequent attachment of the amine-modified aptamer to the polyanilinated MOFs was accomplished using glutaraldehyde (GA) as a cross-linking agent. The prepared biocompatible platform was carefully characterized by means of field-emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDS), Fourier transform... 

    Development of a sensitive diagnostic device based on zeolitic imidazolate frameworks-8 using ferrocene-graphene oxide as electroactive indicator for pseudomonas aeruginosa detection

    , Article ACS Sustainable Chemistry and Engineering ; Volume 7, Issue 15 , 2019 , Pages 12760-12769 ; 21680485 (ISSN) Shahrokhian, S ; Ranjbar, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Since Gram-negative bacteria have a predominant role in nosocomial infections, there are high demands to develop a fast and sensitive method for diagnosis of bacteria in clinical samples. To address this challenge, we designed a novel electrochemical biosensor based on aptamers immobilized in engineered zeolitic imidazolate Framework-8 (ZIFs-8) via EDC-NHS chemistry. Cyclic voltammetry and electrochemical impedance spectroscopy techniques were conducted to monitor the electrochemical characterization. With respect to unique π-πinteractions between aptamer and graphene oxide (GO), the differential pulse voltammetry technique was applied with ferrocene-graphene oxide (Fc-GO) as an... 

    Thermal synergistic effect in hybrid filler epoxy composites consisting of graphene nanoplatelets and SiC particles

    , Article Thermal Science and Engineering Progress ; Volume 25 , 2021 ; 24519049 (ISSN) Nouri Borujerdi, A ; Kazemi Ranjbar, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The use of hybrid filler is a promising strategy for development of thermally conductive polymer composites. This paper reported the measurement of thermal conductivity of the epoxy composite filled with a hybrid filler of graphene nanoplatelet (GNP) and silicon carbide (SiC) microparticles. For this hybrid filler, the effect of the average size of SiC on composite thermal conductivity was examined. The results showed that the thermal synergistic effect was highly affected by the average size of the SiC. By using a hybrid filler of 11% vol. GNP and 9% vol. 1 µm-size SiC micro-particles thermal conductivity has reached 3.44 W m−1 K−1. This value is 42% higher than the thermal conductivity of... 

    Thermal and electrical conductivity of a graphene-based hybrid filler epoxy composite

    , Article Journal of Materials Science ; Volume 56, Issue 27 , 2021 , Pages 15151-15161 ; 00222461 (ISSN) Nouri Borujerdi, A ; Kazemi Ranjbar, S ; Sharif University of Technology
    Springer  2021
    Abstract
    The development of polymer-based composites with thermal transport capability has now become essential in response to the efficient thermal management required in electronic and energy conversion devices. In this work, a novel hybrid filler consisting of graphene nanoplatelet (GNP) and boron nitride microparticles (micro-BN) is used to improve the thermal conductivity of epoxy composite. The GNPs with an average lateral size of 8 µm and an average thickness of 5 nm are in the same volume range with the 1 µm size micro-BN particles. According to the results, the thermal conductivity of the composites changes abruptly with increasing micro-BN loading at fixed GNP loading, which is attributed... 

    Study of two dimensional anisotropic Ising models via a renormalization group approach

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 392, Issue 22 , 2013 , Pages 5604-5614 ; 03784371 (ISSN) Taherkhani, F ; Akbarzadeh, H ; Abroshan, H ; Ranjbar, S ; Fortunelli, A ; Parsafar, G ; Sharif University of Technology
    2013
    Abstract
    A method is developed to calculate the critical line of two dimensional (2D) anisotropic Ising model including nearest-neighbor interactions. The method is based on the real-space renormalization group (RG) theory with increasing block sizes. The reduced temperatures, Ks (where K=J/kBT and J, kB, and T are the spin coupling interaction, the Boltzmann constant, and the absolute temperature, respectively), are calculated for different block sizes. By increasing the block size, the critical line for three types of lattice, namely: triangular, square, and honeycomb, is obtained and found to compare well with corresponding results reported by Onsager in the thermodynamic limit. Our results also... 

    A decentralized energy management framework for energy hubs in dynamic pricing markets

    , Article IEEE Transactions on Smart Grid ; 2017 ; 19493053 (ISSN) Bahrami, S ; Toulabi, M ; Ranjbar, S ; Moeini Aghtaie, M ; Ranjbar, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    With increasing the presence of co-and tri-generating units, energy hub operators are encouraged to optimally schedule the available energy resources in an economic way. This scheduling needs to be run in an online manner due to the uncertainties in energy prices and demands. In this paper, the real-time scheduling problem of energy hubs is formulated in a dynamic pricing market. The energy hubs interaction is modeled as an exact potential game to optimize each energy hub’s payments to the electricity and gas utilities, as well as the customers’ satisfaction from energy consumption. The potential game approach enables us to study the existence and uniqueness of the Nash equilibrium (NE) and... 

    A decentralized energy management framework for energy hubs in dynamic pricing markets

    , Article IEEE Transactions on Smart Grid ; Volume 9, Issue 6 , 2018 , Pages 6780-6792 ; 19493053 (ISSN) Bahrami, S ; Toulabi, M ; Ranjbar, S ; Moeini Aghtaie, M ; Ranjbar, A. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    With increasing the presence of co- and tri-generating units, energy hub operators are encouraged to optimally schedule the available energy resources in an economic way. This scheduling needs to be run in an online manner due to the uncertainties in energy prices and demands. In this paper, the real-time scheduling problem of energy hubs is formulated in a dynamic pricing market. The energy hubs interaction is modeled as an exact potential game to optimize each energy hub's payments to the electricity and gas utilities, as well as the customers' satisfaction from energy consumption. The potential game approach enables us to study the existence and uniqueness of the Nash equilibrium and to... 

    Electrochromism: An emerging and promising approach in (bio)sensing technology

    , Article Materials Today ; Volume 50 , 2021 , Pages 476-498 ; 13697021 (ISSN) Farahmand Nejad, M. A ; Ranjbar, S ; Parolo, C ; Nguyen, E. P ; Álvarez Diduk, R ; Hormozi Nezhad, M. R ; Merkoçi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Electrochromism (EC) is a unique property of certain materials that undergo an electrochemical-induced change in colouration. During the last decades, electrochromic materials (ECMs) have been applied in a variety of technologies ranging from smart windows to information displays and energy storage devices. More recently, ECMs have attracted the attention of the (bio)sensing community thanks to their ability to combine the sensitivity of electrochemical methods with the intuitive readout of optical sensors. Although still a nascent technology, EC-based sensors are on the rise with several targets (e.g. cancer biomarkers, bacteria, metabolites and pesticides), which have already been detected... 

    Reduced polydopamine coated graphene for delivery of Hset1 antisense as A photothermal and gene therapy of breast cancer

    , Article Journal of Drug Delivery Science and Technology ; Volume 73 , 2022 ; 17732247 (ISSN) Babavalian, A ; Tekie, F. S. M ; Ayazi, H ; Ranjbar, S ; Varshochian, R ; Rad-Malelkshahi, M ; Akhavan, O ; Dinarvand, R ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    Breast cancer is the most prevalent type of cancer in women; hence, many researches have been focused on developing effective treatment protocols. In this study, a novel nanocarrier was fabricated for gene and photothermal combination cancer therapy by conjugating histone methyltransferase complex subunit SET1 (hSET1) on reduced polydopamine coated graphene oxide nanosheets (rGO-PDA). The rGO-PDA nanocarriers provide higher near-infrared absorption and further integrating with hSET1 antisense as an anticancer gene that down-regulates the amount of hSET1 overexpressed and suppresses the proliferation of cancer cells. The nanoplatform was prepared by polymerizing of dopamine, a mussel adhesive... 

    A novel ratiometric fluorescent approach for the modulation of the dynamic range of lateral flow immunoassays

    , Article Advanced Materials Technologies ; Volume 7, Issue 8 , 2022 ; 2365709X (ISSN) Sena-Torralba, A ; Torné Morató, H ; Parolo, C ; Ranjbar, S ; Farahmand Nejad, M. A ; Álvarez Diduk, R ; Idili, A ; Hormozi Nezhad, M. R ; Merkoçi, A ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The majority of lateral flow assays (LFAs) use single-color optical labels to provide a qualitative naked-eye detection, however this detection method displays two important limitations. First, the use of a single-color label makes the LFA prone to results misinterpretation. Second, it does not allow the precise modulation of the sensitivity and dynamic range of the test. To overcome these limitations, a ratiometric approach is developed. In particular, using anti-HIgG functionalized red-fluorescent quantum dots on the conjugate pad (as target dependent labels) and blue-fluorescent nanoparticles fixed on the test line (as target independent reporters), it is possible to generate a wide color...