Loading...
Search for: rajabi-ghahnavieh--a
0.02 seconds

    Explicit degradation modelling in optimal lead-acid battery use for photovoltaic systems

    , Article IET Generation, Transmission and Distribution ; Volume 10, Issue 4 , 2016 , Pages 1098-1106 ; 17518687 (ISSN) Sina Hamedi, A ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    Lead-acid battery is a storage technology that is widely used in photovoltaic (PV) systems. Battery charging and discharging profiles have a direct impact on the battery degradation and battery loss of life. This study presents a new 2-model iterative approach for explicit modelling of battery degradation in the optimal operation of PV systems. The proposed approach consists of two models: namely, economic model and degradation model which are solved iteratively to reach the optimal solution. The economic model is a linear programming optimisation problem that calculates the optimal hourly battery use profile based on an assumed value of the battery degradation cost. The degradation model,... 

    A comprehensive framework for optimal planning of competing energy hubs based on the game theory

    , Article Sustainable Energy, Grids and Networks ; Volume 27 , 2021 ; 23524677 (ISSN) Farshidian, B ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The concept of energy hub has been used recently to study multi-carrier energy systems. A model has been proposed in this paper for planning multi-hub energy system considering the competition between the hubs. The energy hubs are interconnected by a power grid. Hubs supply the demands for heat and electricity using various technologies and access to several energy carriers. To this aim, load zones were used to incorporate demand profiles for both heat and electricity in the different seasons of the year. Supplying the demand most cost-effectively is the objective function of each hub. These hubs select the optimum strategy separately in a competitive space. The power grid is owned by... 

    Optimal fast charging station placing and sizing

    , Article Applied Energy ; Vol. 125 , July , 2014 , pp. 289-299 ; ISSN: 03062619 Sadeghi-Barzani, P ; Rajabi-Ghahnavieh, A ; Kazemi-Karegar, H ; Sharif University of Technology
    Abstract
    Fast charging stations are vital components for public acceptance of electric vehicle (EV). The stations are connected to the electric grid and can recharge an electric vehicle in less than 20. min. Charging station development is highly influenced by the government policy in allocating station development costs. This paper presents a Mixed-Integer Non-Linear (MINLP) optimization approach for optimal placing and sizing of the fast charging stations. The station development cost, EV energy loss, electric gird loss as well as the location of electric substations and urban roads are among the factors included in the proposed approach. Geographic information has been used to determine EV energy... 

    A game theoretic framework for DG optimal contract pricing

    , Article 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe, ISGT Europe 2013 ; 2013 ; 9781479929849 (ISBN) Mobarakeh, A. S ; Rajabi-Ghahnavieh, A ; Zahedian, A ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new approach based on multi leader follower game in order to find the optimal contract price of distributed generation in distribution network considering competition among them. The leader problems correspond to the independent DG units who decide to maximize the individual profits, while the follower problem refers to the distribution company (DisCo) which seeks the minimization of the payments incurred in attending the expected demand while satisfying network constraints. Disco can purchase energy either from the transmission network through the substations or from the DG units within its network. The DisCo minimization problem acts as a constraint into the each DG... 

    Financial tools to manage dispatchable Distributed Generation economic risks

    , Article International Conference on Smart Energy Grid Engineering, SEGE 2015, 17 August 2015 through 19 August 2015 ; 2015 ; 9781467379328 (ISBN) Karimi, S. A ; Rajabi-Ghahnavieh, A ; Azad, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Distributed Generation (DG) has received increasing attention during the last decade. Advantage and constraints of DG application are well known to both DG owner and electric utility. Various technologies are available for DG units among them gas GenSet is, in particular, more attractive to the investors as the technology provides the control on DG generation. However, there are various financial risks associated with dispatchable DG units that prohibit wide private investment in such technologies. This paper examines the use of financial tools to manage dispatchable DG economic risks. A comprehensive framework has been proposed to consider various economic risks to DG owner. Suitable models... 

    A bi-level approach for optimal contract pricing of independent dispatchable DG units in distribution networks

    , Article International Transactions on Electrical Energy Systems ; Volume 26, Issue 8 , 2016 , Pages 1685-1704 ; 20507038 (ISSN) Sadeghi Mobarakeh, A ; Rajabi Ghahnavieh, A ; Haghighat, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Distributed generation (DG) units are increasingly installed in the power systems. Distribution companies (DisCo) can opt to purchase the electricity from DG in an energy purchase contract to supply the customer demand and reduce energy loss. This paper proposes a framework for optimal contract pricing of independent dispatchable DG units considering competition among them. While DG units tend to increase their profit from the energy purchase contract, DisCo minimizes the demand supply cost. Multi-leader follower game theory concept is used to analyze the situation in which competing DG units offer the energy price to DisCo and DisCo determines the DG generation. A bi-level approach is used... 

    Planning of multi-hub energy system by considering competition issue

    , Article International Journal of Sustainable Energy Planning and Management ; Volume 30 , 2021 , Pages 5-20 ; 22462929 (ISSN) Farshidian, B ; Rajabi Ghahnavieh, A ; Haghi, E ; Sharif University of Technology
    Aalborg University press  2021
    Abstract
    Energy hub concept has been emerged as a suitable tool to analyze multi-carrier energy systems. Deregulation and increasing competition in the energy industry have provided a suitable platform for developing the multi-agent energy systems. Planning of energy hubs considering the competition between the hubs has not been sufficiently addressed, yet. A model has been proposed in this study for planning of a multi-hub energy system considering the competition between the hubs. The hubs are interconnected via an electric transmission system. A linear model has been developed to determine the optimal planning/operation strategy for energy hubs in a multi-period planning horizon to meet the heat... 

    A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe

    , Article Renewable Energy ; Volume 163 , 2021 , Pages 2115-2127 ; 09601481 (ISSN) Khalilmoghadam, P ; Rajabi Ghahnavieh, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, a latent heat storage unit and built-in condenser were integrated with a solar still. Storage of dissipated latent heat of vapor during the day and using it after sunset prolongs system operation. During the day, the entire solar radiation was consumed to heat the saline water and only the heat coming from the condensation of vapor was stored in the phase change material (PCM). The dissipated heat from the condenser body was transferred to the PCM and stored. Additionally, the existence of PCM on the outer surfaces of the condenser prevented the rise of condenser wall temperature during the day and kept the condenser temperature low. After sunset, the heat stored in the PCM... 

    Energy storage in renewable-based residential energy hubs

    , Article IET Generation, Transmission and Distribution ; Volume 10, Issue 13 , 2016 , Pages 3127-3134 ; 17518687 (ISSN) Barmayoon, M. H ; Fotuhi Firuzabad, M ; Rajabi Ghahnavieh, A ; Moeini Aghtaie, M ; Sharif University of Technology
    Institution of Engineering and Technology 
    Abstract
    Energy storage systems are expected as a near-term solution for renewable energy application in the residential energy hubs. Within this context, this study investigates the feasibility of using storage systems in improving the technical and financial performance of the residential renewable-based energy hub. A new approach has been proposed in this study in which economic dispatch problem has been formulated for an energy hub including both electrical and heat storage system. The proposed approach determines the optimal supply of energy demand and storage system operation to minimise the total energy cost of the hub. The economic benefit of storage system due to energy cost saving and... 

    Flexibility scheduling for large customers

    , Article IEEE Transactions on Smart Grid ; 2017 ; 19493053 (ISSN) Angizeh, F ; Parvania, M ; Fotuhi Firuzabad, M ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Abstract
    Large customers are considered as major flexible electricity demands which can reduce their electricity costs by choosing appropriate strategies to participate in demand response programs. However, practical methods to aid the large customers for handling the complex decision making process for participating in the programs have remained scarce. This paper proposes a novel decision-making tool for enabling large customers to determine how they adjust their electricity usage from normal consumption patterns in expectation of gaining profit in response to changes in prices and incentive payments offered by the system operators. The proposed model, formulated as a mixed-integer linear... 

    Optimal DG placement in distribution systems using cost/worth analysis

    , Article World Academy of Science, Engineering and Technology ; Volume 37 , 2009 , Pages 746-753 ; 2010376X (ISSN) Ahmadigorji, M ; Abbaspour, A ; Rajabi Ghahnavieh, A ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2009
    Abstract
    DG application has received increasing attention during recent years. The impact of DG on various aspects of distribution system operation, such as reliability and energy loss, depend highly on DG location in distribution feeder. Optimal DG placement is an important subject which has not been fully discussed yet. This paper presents an optimization method to determine optimal DG placement, based on a cost/worth analysis approach. This method considers technical and economical factors such as energy loss, load point reliability indices and DG costs, and particularly, portability of DG. The proposed method is applied to a test system and the impacts of different parameters such as load growth... 

    Flexibility scheduling for large customers

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 1 , 2019 , Pages 371-379 ; 19493053 (ISSN) Angizeh, F ; Parvania, M ; Fotuhi Firuzabad, M ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Large customers are considered as major flexible electricity demands which can reduce their electricity costs by choosing appropriate strategies to participate in demand response programs. However, practical methods to aid the large customers for handling the complex decision making process for participating in the programs have remained scarce. This paper proposes a novel decision-making tool for enabling large customers to determine how they adjust their electricity usage from normal consumption patterns in expectation of gaining profit in response to changes in prices and incentive payments offered by the system operators. The proposed model, formulated as a mixed-integer linear... 

    Flexibility scheduling for large customers

    , Article IEEE Transactions on Smart Grid ; Volume 10, Issue 1 , 2019 , Pages 371-379 ; 19493053 (ISSN) Angizeh, F ; Parvania, M ; Fotuhi Firuzabad, M ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Large customers are considered as major flexible electricity demands which can reduce their electricity costs by choosing appropriate strategies to participate in demand response programs. However, practical methods to aid the large customers for handling the complex decision making process for participating in the programs have remained scarce. This paper proposes a novel decision-making tool for enabling large customers to determine how they adjust their electricity usage from normal consumption patterns in expectation of gaining profit in response to changes in prices and incentive payments offered by the system operators. The proposed model, formulated as a mixed-integer linear... 

    A heuristic ranking approach on capacity benefit margin determination using pareto-based evolutionary programming technique

    , Article Scientific World Journal ; Volume 2015 , 2015 ; 23566140 (ISSN) Murtadha Othman, M ; Abd Rahman, N ; Musirin, I ; Fotuhi Firuzabad, M ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Hindawi Publishing Corporation  2015
    Abstract
    This paper introduces a novel multiobjective approach for capacity benefit margin (CBM) assessment taking into account tie-line reliability of interconnected systems. CBM is the imperative information utilized as a reference by the load-serving entities (LSE) to estimate a certain margin of transfer capability so that a reliable access to generation through interconnected system could be attained. A new Pareto-based evolutionary programming (EP) technique is used to perform a simultaneous determination of CBM for all areas of the interconnected system. The selection of CBM at the Pareto optimal front is proposed to be performed by referring to a heuristic ranking index that takes into... 

    Photothermally heated and mesh-gridded solar-driven direct contact membrane distillation for high saline water desalination

    , Article International Journal of Heat and Mass Transfer ; Volume 199 , 2022 ; 00179310 (ISSN) Shokrollahi, M ; Asadollahi, M ; Mousavi, S.A ; Rajabi ghahnavieh, A ; Behzadi Sarok, M ; Khayet, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Photothermally heated and mesh-gridded membrane distillation (PHMD) system is proposed for desalination of high saline aqueous solutions. A triple-layered membrane, composed of a photothermal top nanofibrous layer containing polyacrylonitrile and dispersed carbon black nanoparticles and a polyvinylidene fluoride porous membrane supported on a nonwoven polyester, was prepared. A polypropylene mesh was used to hold the membrane. A 3D numerical simulation of the PHMD system was carried out by COMSOL and the appropriate length of the membrane module was determined. The effects of various operating parameters including solar radiation intensity on the permeate flux and thermal efficiency were...