Loading...
Search for: pishbin--f
0.008 seconds

    Electrophoretic deposition of chitosan

    , Article Materials Letters ; Volume 63, Issue 26 , 2009 , Pages 2253-2256 ; 0167577X (ISSN) Simchi, A ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    2009
    Abstract
    The electrophoretic deposition (EPD) of chitosan on metallic substrates was investigated. The electrophoretic mobility of the natural biopolymer in aqueous solution as a function of pH was studied. Because the protonation/deporotonation of chitosan is pH-dependent, the electrophoretic mobility and deposition rate is shown to increase with increasing pH from 2.9 to 4.1. The film growth rate is estimated to vary in the range 0.02-0.08 μm/s depending on the pH value. At high growth rates (> 0.05 μm/s), a porous film is obtained due to hydrogen entrapment. The EPD method developed here is applicable for the surface modification of metal implants by chitosan to develop novel bioactive coatings. ©... 

    Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 1 , Feb , 2011 , Pages 22-39 ; 15499634 (ISSN) Simchi, A ; Tamjid, E ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    Abstract
    This review covers the most recent developments of inorganic and organic-inorganic composite coatings for orthopedic implants, providing the interface with living tissue and with potential for drug delivery to combat infections. Conventional systemic delivery of drugs is an inefficient procedure that may cause toxicity and may require a patient's hospitalization for monitoring. Local delivery of antibiotics and other bioactive molecules maximizes their effect where they are required, reduces potential systemic toxicity and increases timeliness and cost efficiency. In addition, local delivery has broad applications in combating infection-related diseases. Polymeric coatings may present some... 

    In vitro bioactivity and biocompatibility of magnesium implants coated with poly(methyl methacrylate) - bioactive glass composite

    , Article Materials Today Communications ; Volume 33 , 2022 ; 23524928 (ISSN) Rouein, Z ; Jafari, H ; Pishbin, F ; Mohandes, F ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Magnesium (Mg) and its alloys have proved promising as biodegradable candidates for the repair of bone tissue. Despite the encouraging bio-related properties of Mg, its high corrosion rate in contact with body fluids still presents a major challenge. An efficient approach to address this issue is to provide a protective coating on Mg. The present research evaluates, for the first time, in vitro bioactivity and biocompatibility of a novel multifunctional composite coating based on poly(methyl methacrylate) (PMMA) biopolymer and bioactive glass (BG) particles on Mg-based implant. Electrophoretic deposition (EPD) was utilized to obtain this coating from a bi-component suspension. Coatings’... 

    Biodegradation behavior of polymethyl methacrylate−bioactive glass 45S5 composite coated magnesium in simulated body fluid

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 32, Issue 7 , 2022 , Pages 2216-2228 ; 10036326 (ISSN) ROUEIN, Z ; Jafari, H ; Pishbin, F ; Mohammadi, R ; Simchi, A ; Sharif University of Technology
    Nonferrous Metals Society of China  2022
    Abstract
    The biodegradation behavior of Mg, coated by polymethyl methacrylate as well as polymethyl methacrylate (PMMA)−bioactive glass (BG) composite was investigated. Electrophoretic deposition and dip coating techniques were adopted to prepare composite coating using a suspension of different percentages of the above two chemical materials. The deposited coatings were characterized using SEM, EDS, FTIR, and water contact angle measurements. Biodegradation behavior study of the coated Mg was performed using linear polarization, impedance spectroscopy, and immersion tests in simulated body fluid. The compact and homogeneous composite coating was developed as evidenced by electron microscopy results.... 

    Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications [electronic resource]

    , Article Nanomedicine-nanotechnology Biology and Medicine - NaoMed- NanoTechnol- Biol Med ; 2011, Vol. 7, No. 1, PP. 22-39 Simchi, A. (Abdolreza) ; Tamjid, E ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    Abstract
    This review covers the most recent developments of inorganic and organic-inorganic composite coatings for orthopedic implants, providing the interface with living tissue and with potential for drug delivery to combat infections. Conventional systemic delivery of drugs is an inefficient procedure that may cause toxicity and may require a patient's hospitalization for monitoring. Local delivery of antibiotics and other bioactive molecules maximizes their effect where they are required, reduces potential systemic toxicity and increases timeliness and cost efficiency. In addition, local delivery has broad applications in combating infection-related diseases. Polymeric coatings may present some...