Loading...
Search for: maneshian--b
0.093 seconds

    Solid state and liquid phase sintering of mechanically activated W-20 wt.% Cu powder mixture

    , Article Journal of Alloys and Compounds ; Volume 463, Issue 1-2 , 8 September , 2008 , Pages 153-159 ; 09258388 (ISSN) Maneshian, M. H ; Simchi, A ; Sharif University of Technology
    2008
    Abstract
    W-20 wt.% Cu powder mixture was mechanically alloyed by high-energy ball milling for various times and the effect of mechanical alloying (MA) on the sintering response of the composite compacts was investigated. The densification, microstructure, hardness and electrical conductivity after solid phase sintering (SPS) and liquid phase sintering (LPS) were examined. It was shown that the microstructure of mechanically alloyed powder profoundly influence the sintering response, i.e. a meaningful relationship between the sintering kinetics and the milling time was observed. It is suggested that MA disintegrates the W-W particle networks and increases the contribution of solid phase sintering... 

    Reverse martensitic transformation in alumina-15 vol% zirconia nanostructured powder synthesized by high energy ball milling

    , Article Journal of Alloys and Compounds ; Volume 459, Issue 1-2 , 2008 , Pages 531-536 ; 09258388 (ISSN) Maneshian, M. H ; Banerjee, M. K ; Sharif University of Technology
    2008
    Abstract
    In the present work, three alumina-15 vol% zirconia composites with Y2O3, MgO as dopants and without oxide as dopant have been investigated. High energy ball milling (HEBM) provides the positive thermodynamic driving force for monoclinic to tetragonal transformation and it reduces starting temperature for the reverse martensitic transformation, meanwhile mobility of zirconium cations and oxygen anions are enhanced in zirconia by HEBM. The general, albeit heuristic, reasoning is corroborated by nanocrystallity, particle size and also the retained monoclinic seem to play an important role. After 10 h HEBM, approximately 28% zirconia tetragonal phase is achieved. Non-stoichiometric tetragonal... 

    Flow control in a cavity with tiny-obstacles on the walls for mixing enhancement part I: Flow physics

    , Article Journal of Applied Fluid Mechanics ; Volume 12, Issue 1 , 2019 , Pages 11-23 ; 17353572 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    Isfahan University of Technology  2019
    Abstract
    This paper seeks to make a study on flow control in two-dimensional square cavities having obstacles on their walls. The goal of using these passive controllers is to enhance mixing in an enclosed space. Lattice Boltzmann method is used to simulate the problem. Results are presented for various Reynolds numbers, 400≤Re≤4000 and different arrangements of tiny-obstacles with different heights. To give a perspective on the physics of this problem, time evolution of the flow is studied at Re= 1000. Then, the flow structure is studied for different Reynolds numbers. Findings show that the interaction of the main vortex with the tiny-obstacles inserted on the wall cavity changes the flow pattern... 

    Flow control in a cavity with tiny-obstacles on the walls for mixing enhancement part I: Flow physics

    , Article Journal of Applied Fluid Mechanics ; Volume 12, Issue 1 , 2019 , Pages 11-23 ; 17353572 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    Isfahan University of Technology  2019
    Abstract
    This paper seeks to make a study on flow control in two-dimensional square cavities having obstacles on their walls. The goal of using these passive controllers is to enhance mixing in an enclosed space. Lattice Boltzmann method is used to simulate the problem. Results are presented for various Reynolds numbers, 400≤Re≤4000 and different arrangements of tiny-obstacles with different heights. To give a perspective on the physics of this problem, time evolution of the flow is studied at Re= 1000. Then, the flow structure is studied for different Reynolds numbers. Findings show that the interaction of the main vortex with the tiny-obstacles inserted on the wall cavity changes the flow pattern... 

    Bubble dynamics in rotating flow under an accelerating field

    , Article Physics of Fluids ; Volume 30, Issue 8 , 2018 ; 10706631 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Sharif University of Technology
    American Institute of Physics Inc  2018
    Abstract
    Three-dimensional bubble dynamics in rotating flow under an accelerating field such as a centrifugal one is studied in this work. We employ the lattice Boltzmann method in two phase flows to simulate bubble dynamics for different Bond and Morton numbers of 0.1, 1, 10, and 100 and 0.001, 0.01, 0.1, 1, 10, and 100, respectively. Another dimensionless number named as dimensionless force, F∗, which is the ratio of buoyancy force to centripetal force is defined to explain the dynamics of the bubbles. In this work, we consider 5×10-7≤F∗≤5. The results show that bubbles in rotating flows have different kinds of motions such as spinning, rotating, and translating. Based on the ratios of the forces... 

    Structural changes during synthesizing of nanostructured W-20 wt% Cu composite powder by mechanical alloying

    , Article Materials Science and Engineering A ; Volume 445-446 , 2007 , Pages 86-93 ; 09215093 (ISSN) Maneshian, M. H ; Simchi, A ; Razavi Hesabi, Z ; Sharif University of Technology
    2007
    Abstract
    Nanostructured W-20 wt% Cu composite powder was synthesized by mechanical alloying (MA) in an Attritor ball mill. The morphological changes and structural evolution of the composite powder during MA was studied by employing scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX), laser particle size analyzer (LPS), inductively coupled plasma (ICP) spectrometry, atomic absorption spectrophotometery (AAS), and the bulk powder density measurement. The results were compared with those obtained from attrition milling of monolithic W and Cu powders processed at the same condition. Whereas the milling mechanism of the monolithic powders follow the ductile (for Cu)... 

    Droplet dynamics in rotating flows

    , Article Advances in Colloid and Interface Science ; Volume 236 , 2016 , Pages 63-82 ; 00018686 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Miller, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    This paper deals with investigations of droplet dynamics in rotating flows. In many previous studies droplet dynamics was analyzed in simple unidirectional flows. To fill this gap, the focus of this study is an overview on investigations of droplet dynamics in a complex rotating flow. A Lattice Boltzmann Method with high potential in simulation of two-phase unsteady flows is applied to simulate the physics of the problem in a lid-driven cavity. In spite of its simple geometry, there is a complex rotating flow field containing different vortices and shear regions. The Reynolds number based on the cavity length scale and the upper wall velocity, ReL, is considered to be 1000. We discuss here... 

    Microwave-induced Cannizzaro reaction over neutral γ-alumina as a polymeric catalyst [electronic resource]

    , Article Reactive and Functional Polymers ; 01/2002; 51(1):49-53 Pourjavadi, A. (Ali) ; Soleimanzadeh, B ; Marandi, G. B
    Abstract
    γ-Alumina is used to catalyze the Cannizzaro reaction in the absence of any base under microwave irradiation in high yields. In the case of terephthalaldehyde the reaction is carried out with high selectivity  

    SnCl4/SiO2: an efficient heterogeneous alternative for one-pot synthesis of β-acetamidoketones

    , Article Journal of the Chinese Chemical Society ; Volume 56, Issue 2 , 2009 , Pages 386-391 ; 00094536 (ISSN) Mirjalili, B. B. F ; Mahmoodi Hashemi, M ; Sadeghi, B ; Emtiazi, H ; Sharif University of Technology
    2009
    Abstract
    Enolizable ketones have been reacted in a one-pot method with aromatic aldehydes, acetyl chloride and acetonitrile at room temperature in the presence of SnCl4/SiO2 to furnish the corresponding β-acetamidoketones in improved yields. Acetylation of an aromatic hydroxyl group was observed while using 4-hydroxybenzaldehyde or vanillin and the corresponding β-acetamidoketones were isolated in an excellent yield  

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The... 

    Numerical investigation of steady density currents flowing down an incline using v2̄ - F turbulence model

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 9 , 2007 , Pages 1172-1178 ; 00982202 (ISSN) Khakzad, N ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2007
    Abstract
    The governing equations of two-dimensional steady density currents are solved numerically using a finite volume method. The v2̄-f turbulence model, based on standard k - s model, is used for the turbulence closure. In this method, all Reynolds stress equations are replaced with both a transport equation for v2̄ and an elliptic relaxation equation for f, a parameter closely related to the pressure strain redistribution term. The Simple-C procedure is used for pressure-velocity coupling. In addition, Boussinesq's approximation is used to obtain the momentum equation. The computed height of the progressive density current is compared to the measured data in the literature, resulting in good... 

    Numerical simulation of turbid-density current using v2̄ - f turbulence model

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 261 FED , 2005 , Pages 619-627 ; 08888116 (ISSN); 0791842193 (ISBN); 9780791842195 (ISBN) Mehdizadeh, A ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2005
    Abstract
    The deposition behavior of fine sediment is an important phenomenon, and yet unclear to engineers concerned about reservoir sedimentation. An elliptic relaxation turbulence model (v2̄ - f model) has been used to simulate the motion of turbid density currents laden whit fine solid particles. During the last few years, the v2̄ - f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. In addition, it has been proved that the v2̄ - f model to be superior to other RANS methods in many fluid flows where complex flow features are present. Due to low Reynolds number turbulence of turbidity current,(its critical Reynolds... 

    Analytical solution for creeping motion of a viscoelastic drop falling through a Newtonian fluid

    , Article Korea Australia Rheology Journal ; Vol. 26, issue. 1 , 2014 , pp. 91-104 ; ISSN: 1226119X Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    2014
    Abstract
    In this paper, an analytical solution for steady creeping motion of viscoelastic drop falling through a viscous Newtonian fluid is presented. The Oldroyd-B model is used as the constitutive equation. The analytical solutions for both interior and exterior flows are obtained using the perturbation method. Deborah number and capillary numbers are considered as the perturbation parameters. The effect of viscoelastic properties on drop shape and motion are studied in detail. The previous empirical studies indicated that unlike the Newtonian creeping drop in which the drop shape is exactly spherical, a dimpled shape appears in viscoelastic drops. It is shown that the results of the present... 

    Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media

    , Article Rheologica Acta ; Volume 55, Issue 11-12 , 2016 , Pages 935-955 ; 00354511 (ISSN) Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    In this paper, creeping motion of a viscoelastic drop falling through a Newtonian fluid is investigated experimentally and analytically. A polymeric solution of 0.08 % xanthan gum in 80:20 glycerol/water and silicon oil is implemented as the viscoelastic drop and the bulk viscous fluids, respectively. The shape and motion of falling drops are visualized using a high speed camera. The perturbation technique is employed for both interior and exterior flows, and Deborah and capillary numbers are considered as perturbation parameters up to second order. The product of Deborah and capillary numbers is also used as a perturbation parameter to apply the boundary condition on the deformation on the... 

    Minimizing uplink delay in delay-sensitive 5G CRAN platforms

    , Article 2nd IEEE 5G World Forum, 5GWF 2019, 30 September 2019 through 2 October 2019 ; 2019 , Pages 154-160 ; 9781728136271 (ISBN) Ataie, A ; Kanaanian, B ; Khalaj, B. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we consider the problem of minimizing the uplink delays of users in a 5G cellular network. Such cellular network is based on a Cloud Radio Access Network (CRAN) architecture with limited fronthaul capacity, where our goal is to minimize delays of all users through an optimal resource allocation. Earlier works minimize average delay of each user assuming same transmit power for all users. Combining Pareto optimization and Markov Decision Process (MDP), we show that every desired balance in the trade-off among infinite-horizon average-reward delays, is achievable by minimizing a properly weighted sum delays. In addition, we solve the problem in two realistic scenarios;... 

    Microwave-induced Cannizzaro reaction over neutral γ-alumina as a polymeric catalyst

    , Article Reactive and Functional Polymers ; Volume 51, Issue 1 , 2002 , Pages 49-53 ; 13815148 (ISSN) Pourjavadi, A ; Soleimanzadeh, B ; Marandi, G. B ; Sharif University of Technology
    2002
    Abstract
    Microwave induced Cannizzaro reaction, which was performed in presence of neutral γ-alumina as a polymeric catalyst, was discussed. Cannizzaro reaction was carried out on alumina surface and other unknown products were also obtained. Solvent extraction method was utilized to isolate mild and selective benzyl alcohol and carboxylic acids  

    Feedback bit reduction for antenna selection methods in wireless systems

    , Article 2005 13th IEEE International Conference on Networks jointly held with the 2005 7th IEEE Malaysia International Conference on Communications, Kuala Lumpur, 16 November 2005 through 18 November 2005 ; Volume 1 , 2005 , Pages 229-233 ; 1424400007 (ISBN); 9781424400003 (ISBN) Shariatpanahi, P ; Babadi, B ; Hossein Khalaj, B ; Sharif University of Technology
    2005
    Abstract
    A well known method to reduce the intrinsic complexity of Multiple Input Multiple Output (MIMO) systems is to choose a subset of available antennas which have stronger links than the others, in order to perform the specified MIMO algorithm. The data resulted from the antenna selection process (at the receiver side) is sent back to the transmitter side via a feedback channel. There seems to be a need to reduce the number of feedack bits, specially when the number of antennas is not small. In this paper, we investigate the problem of reducing the number of feedback bits in antenna selection techniques. We've proposed two methods using vector quantization techniques to perform feedback bit... 

    A distributed locality-aware neighbor selection algorithm for P2P video streaming over wireless mesh networks

    , Article 2012 6th International Symposium on Telecommunications, IST 2012 ; 2012 , Pages 639-643 ; 9781467320733 (ISBN) Moayeri, F ; Akbari, B ; Khansari, M ; Ahmadifar, B ; Sharif University of Technology
    2012
    Abstract
    Nowadays, deployment of peer-to-peer video streaming systems over wireless mesh networks has attained raising popularity among large number of users around the world. In this paper, we present an efficient peer-to-peer live video streaming architecture over multi-hop wireless mesh networks. In our proposed architecture, we take the physical topology of network into account and based on a distributed distributed locality-aware neighbor selection algorithm in the overlay construction phase, we generate an efficient mesh-based overlay on top of wireless mesh networks. In locality-aware neighbor selection algorithm, instead of choosing randomly, peers find their best neighbors based on their... 

    Weighted sparse signal decomposition

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings ; 2012 , Pages 3425-3428 ; 15206149 (ISSN) ; 9781467300469 (ISBN) Babaie Zadeh, M ; Mehrdad, B ; Giannakis, G. B ; Sharif University of Technology
    IEEE  2012
    Abstract
    Standard sparse decomposition (with applications in many different areas including compressive sampling) amounts to finding the minimum ℓ 0-norm solution of an underdetermined system of linear equations. In this decomposition, all atoms are treated 'uniformly' for being included or not in the decomposition. However, one may wish to weigh more or less certain atoms, or, assign higher costs to some other atoms to be included in the decomposition. This can happen for example when there is prior information available on each atom. This motivates generalizing the notion of minimal ℓ 0-norm solution to that of minimal weighted ℓ 0-norm solution. On the other hand, relaxing weighted ℓ 0-norm via... 

    Effect of miscible nitrogen injection on instability, particle size distribution, and fractal structure of asphaltene aggregates

    , Article Journal of Dispersion Science and Technology ; Volume 33, Issue 5 , 2012 , Pages 763-770 ; 01932691 (ISSN) Moradi, S ; Dabir, B ; Rashtchian, D ; Mahmoudi, B ; Sharif University of Technology
    2012
    Abstract
    Precipitation, aggregation, and breakup of asphaltene particles are studied under natural depletion and nitrogen injection processes by means of high pressure filtration and a photographic procedure coupled with image analysis. Filtration results show that nitrogen destabilizes asphaltenes extremely, and the problem is more severe for heavier crude samples. Bimodal histograms of particle size distribution show two agglomeration mechanisms: cluster aggregation dominant around bubble point pressure and diffusion limited far away. The fractal structure of aggregates is also altered by gas injection; it is observed that the flocculent masses grow in size and become more compact and organized...