Loading...
Search for: maddahian--r
0.005 seconds

    Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 49, Issue 2 , February , 2013 , Pages 247-260 ; 09477411 (ISSN) Saidi, M ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2013
    Abstract
    In this study, the effect of cone angle on the flow field and separation efficiency of deoiling hydrocyclones is investigated taking advantage of large eddy simulation. The dynamic Smagorinsky is employed to determine the residual stress tensor of the continuous phase. The method of Lagrangian particle tracking with an optimized search algorithm (closest cell) is applied to evaluate the separation efficiency of deoiling hydrocyclone. Simulations are performed on a 35-mm deoiling hydrocyclone with the three different cone angles of 6, 10 and 20 degree. The numerical results revealed that the changes in the cone angle would affect the velocity and pressure distribution inside hydrocyclone, and... 

    Analytical study of single particle tracking in both free and forced vortices

    , Article Scientia Iranica ; Volume 20, Issue 2 , April , 2013 , Pages 351-358 ; 10263098 (ISSN) Salari, A ; Karmozdi, M ; Maddahian, R ; Firoozabadi, B ; Sharif University of Technology
    2013
    Abstract
    Today, the flow of gas-solid, solid-liquid and liquid-liquid mixtures is broadly used in many industries such as slurry transportation, propulsion, dredging and power generation equipment. In this paper, single solid particle motion through free and forced vortices is analytically studied. The equations are solved for cases in which the drag, pressure gradient, added mass, buoyancy and weight forces are considered individually and simultaneously. Verification has been done for the value of ReP , which confirms the solution for the first t = 0.1 s. The results show that the most important force governing particle motion is the pressure gradient force  

    Modeling of flow field and separation efficiency of a deoiling hydrocyclone using large eddy simulation

    , Article International Journal of Mineral Processing ; Volume 112-113 , 2012 , Pages 84-93 ; 03017516 (ISSN) Saidi, M ; Maddahian, R ; Farhanieh, B ; Afshin, H ; Sharif Unviersity of Technology
    Elsevier  2012
    Abstract
    In order to evaluate the separation efficiency and flow field of deoiling hydrocyclones a three dimensional simulation is performed using large eddy simulation (LES) approach. Although this approach has been used in other types of hydrocyclones, the present work is a primer application of the LES approach for simulation of deoiling hydrocyclones. Due to anisotropic behavior of flow inside the hydrocyclones, LES is a suitable method to predict the flow field since it resolves large scales and models isotropic small scales. Obtained velocity field using the LES approach in comparison with other turbulence models is in good agreement with available experimental velocity measurements. The method... 

    Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: The influence of small aspect ratio

    , Article Archive of Applied Mechanics ; Volume 80, Issue 7 , 2010 , Pages 727-745 ; 09391533 (ISSN) Faghani, E ; Maddahian, R ; Faghani, P ; Farhanieh, B ; Sharif University of Technology
    2010
    Abstract
    In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-ε model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in... 

    Numerical investigation of corner angle and wing number effects on fluid flow characteristics of a turbulent stellar jet

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 46, Issue 1 , 2009 , Pages 25-37 ; 09477411 (ISSN) Faghani, E ; Saemi, S ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    2009
    Abstract
    In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using k-ε and k-ω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15-65° corner angles are studied. Also the effect of... 

    Numerical investigation of effect of aspect ratio of rectangular nozzles

    , Article 2008 2nd International Conference on Thermal Issues in Emerging Technologies, ThETA 2008, Cairo, 17 December 2008 through 20 December 2008 ; July , 2008 , Pages 391-398 ; 9781424435777 (ISBN) Faghani, E ; Farhanieh, B ; Maddahian, R ; Faghani, P ; Sharif University of Technology
    2008
    Abstract
    In this research the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k-e model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at jet centerline are noted. The velocity vectors of a main flow and secondary flow are illustrated. Also effect of aspect ratio on mixing in rectangular cross... 

    On the effect of inflow conditions in simulation of a turbulent round jet

    , Article Archive of Applied Mechanics ; Volume 81, Issue 10 , 2011 , Pages 1439-1453 ; 09391533 (ISSN) Faghani, E ; Saemi, S. D ; Maddahian, R ; Farhanieh, B ; Sharif University of Technology
    Abstract
    This paper investigates the impact of the inflow conditions on simulations of a round jet discharging from a wall into a large space. The fluid dynamic characteristics of a round jet are studied numerically. A numerical method based on the control volume approach with collocated grid arrangement is employed. The k-ε model is utilized to approximate turbulent stresses by considering six different inlet conditions. The velocity field is presented, and the rate of decay at the jet centerline is determined. The results showed that inflow conditions had a strong influence on the jet characteristics. This paper also investigates both sharp-edged and contoured nozzles. The effects of velocity,...