Loading...
Search for: jumadi--n--a
0.117 seconds

    Development of physical 3D model of maternal-fetal to study light interaction through tissue

    , Article 2012 International Conference on Biomedical Engineering, ICoBE 2012 ; 2012 , Pages 557-561 ; 9781457719899 (ISBN) Jumadi, N. A ; Gan, K. B ; Mohd Ali, M. A ; Zahedi, E ; Sharif University of Technology
    2012
    Abstract
    The development of a synthetic model of a pregnant woman abdomen with amniotic fluid and a fetus is discussed comprehensively in this paper. The model is intended to be used for studying the light propagation through physical 3D model of pregnant woman in reflectance mode. To construct the model, reported dimension values of body curvature in 26 and 28 weeks of pregnant woman are being used as main references. Although slightly adjustments have been made to the body dimensions, the values are still within the range of reference values. Optical simulation has been performed in order to test the model capability. Given the reasonable computational time and encouraging preliminary results, the... 

    Determination of reflectance optical sensor array configuration using 3-layer tissue model and Monte Carlo simulation

    , Article IFMBE Proceedings, 20 June 2011 through 23 June 2011 ; Volume 35 IFMBE , 2011 , Pages 424-427 ; 16800737 (ISSN) ; 9783642217289 (ISBN) Jumadi, N. A ; Gan, K. B ; Mohd Ali, M. A ; Zahedi, E ; Sharif University of Technology
    2011
    Abstract
    A new reflectance optical sensor array for locating fetal signal transabdominally has been determined in this study. The selection of optical sensor array is based on the highest Irradiance (μW/m2) value estimated on respected detectors. A three-layer semi-infinite tissue model which consists of maternal, amniotic fluid sac and fetal tissues is employed to study the optical sensor array configuration. By using statistical error approach, the number of rays injected to the system can be set to 1 million rays with ±3.2% of simulation error. The simulation results obtained from Monte Carlo technique reveal that diamond configuration is the most suitable configuration of reflectance optical... 

    Processing and properties of nanofibrous bacterial cellulose-containing polymer composites: a review of recent advances for biomedical applications

    , Article Polymer Reviews ; Volume 60, Issue 1 , 2020 , Pages 144-170 Eslahi, N ; Mahmoodi, A ; Mahmoudi, N ; Zandi, N ; Simchi, A ; Sharif University of Technology
    Taylor and Francis Inc  2020
    Abstract
    Bacterial cellulose (BC) is an extracellular natural polymer produced by many microorganisms and its properties could be tailored via specific fabrication methods and culture conditions. There is a growing interest in BC derived materials due to the main features of BC such as porous fibrous structure, high crystallinity, impressive physico-mechanical properties, and high water content. However, pristine BC lacks some features, limiting its practical use in varied applications. Thus, fabrication of BC composites has been attempted to overcome these constraints. This review article overviews most recent advance in the development of BC composites and their potential in biomedicine including... 

    A meta user interface for interaction with mixed reality environments

    , Article 2015 IEEE International Symposium on Haptic, Audio and Visual Environments and Games, HAVE 2015 - Proceedings, 11 October 2015 ; October , 2015 , Page(s): 1 - 6 ; 9781467391757 (ISBN) Mostafazadeh, A ; Shirehjini, A. A. N ; Daraei, S ; Khojasteh, N ; Shirmohammadi, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    The aim of this paper is the design and development of a novel user interface to interact with a meta system. Our focus is rather on interacting with Ambient Intelligence as a whole, which would for example enable users to influence the overall behaviors and attributes of dynamic device compositions. We call such interfaces Meta User Interfaces. The design details of a proposed user interface as well as a cognitive walkthrough evaluation are presented in this paper  

    Effect of RGO/Zn:XCd1- xS crystalline phase on solar photoactivation processes

    , Article RSC Advances ; Volume 6, Issue 52 , 2016 , Pages 46282-46290 ; 20462069 (ISSN) Moradlou, O ; Tedadi, N ; Banazadeh, A ; Naseri, N ; Sharif University of Technology
    Royal Society of Chemistry  2016
    Abstract
    A series of reduced graphene oxide/ZnxCd1-xS (RGO/ZnxCd1-xS) nanocomposites (0 < x < 1) with different ratios of Zn/Cd were synthesized via a facile hydrothermal route under optimized experimental conditions and were carefully characterized by various techniques. Because very little is known about the morphology, specific surface area, and crystal phase effects of RGO/ZnxCd1-xS crystals on their photoresponsivity, field-emission scanning electron microscopy (FE-SEM), BET surface area analysis and X-ray diffraction (XRD) data were studied to investigate their effects on photoactivity. Based on the results, a crystal phase transition from a cubic phase in RGO/Zn0.9Cd0.1S to a hexagonal... 

    Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 85 , 2016 , Pages 113-122 ; 1359835X (ISSN) Azarniya, A ; Eslahi, N ; Mahmoudi, N ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    In this work, novel chitosan/bacterial cellulose (CS/BC) nanofibrous composites reinforced with graphene oxide (GO) nanosheets are introduced. As cell attachment and permeability of nanofibrous membranes highly depend on their fiber diameter, the working window for successful electrospinning to attain sound nanofibrous composites with a minimum fiber diameter was determined by using the response surface methodology. It is shown that the addition of GO nanosheets to CS/BC significantly reduces the average size of the polymeric fibers. Their mechanical properties are also influenced and can be tailored by the concentration of GO. Fourier transform infrared spectroscopy reveals hydrogen bonding... 

    Promoting the optimal maintenance schedule of generating facilities in open systems

    , Article International Conference on Power System Technology, PowerCon 2002, 13 October 2002 through 17 October 2002 ; Volume 1 , 2002 , Pages 641-645 ; 0780374592 (ISBN); 9780780374591 (ISBN) Tabari, N. M ; Ranjbar, A. M ; Sadati, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2002
    Abstract
    This paper presents a dynamic programming methodology for finding the optimum preventive maintenance schedule of generating units of a GENCO in open power systems. The objective function for the GENCO is to sell electricity as much as possible, according to the market price forecast. Various constraints such as generation capacity, duration of maintenance and maintenance crew are taken into account. In a case study, introducing a GENCO with six generating units, and implementing dynamic programming, we obtain the optimal maintenance schedule over the planning period. © 2002 IEEE  

    Mechanically stable superhydrophobic nanostructured aluminum mesh with reduced water surface friction

    , Article Nanotechnology ; Volume 32, Issue 19 , 2021 ; 09574484 (ISSN) Taghvaei, E ; Afzali, N ; Taghvaei, N ; Moosavi, A ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Superhydrophobic surfaces demonstrate significant characteristics which make them suitable for a wide variety of applications. In this study, we propose a facile, one-step, and cost-effective anodizing scheme using aluminum nitrate/stearic acid mixture solution to create a superhydrophobic surface on an aluminum mesh. The surface outperforms the surface anodized by the widely used oxalic acid solution in terms of superhydrophobicity and water-surface friction behavior. The proposed surface reduced the friction by 11% on average respective to the surface prepared by oxalic acid. The durability of the introduced superhydrophobic surface has also been investigated. The proposed surface retained... 

    Oxygen permeation and oxidative coupling of methane in membrane reactor: A new facile synthesis method for selective perovskite catalyst

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 286, Issue 1-2 , 2008 , Pages 79-86 ; 13811169 (ISSN) Taheri, Z ; Nazari, K ; Safekordi, A. A ; Seyed Matin, N ; Ahmadi, R ; Esmaeili, N ; Tofigh, A ; Sharif University of Technology
    2008
    Abstract
    A dense membrane of La0.6Sr0.4Co0.8Fe0.2O3- δ (LSCF) perovskite was prepared by a new chelating agent, ethylene diamine N,N,N′,N′-tetra N-acetyl diamine (EDTNAD). As a potent ligand, EDTNAD provided a facile one-step method to form complexes of the four metal ions, simultaneously. The oxygen permeation flux through the pure perovskite LSCF dense membrane was measured over temperature range of 1073-1223 K, thickness of 0.7-1.0 mm and oxygen partial pressure of 0.1-1.0 bar. Oxidative coupling of methane (OCM) reaction using LSCF disk in the atmospheric membrane reactor and over the temperature range of 1073-1173 K showed a C2 selectivity of 100% and C2 yield of 5.01% at 1153 K. Furthermore,... 

    Synchronization of hidden hyperchaotic attractors in fractional-order complex-valued systems with application to secure communications

    , Article 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, 26 January 2021 through 28 January 2021 ; 2021 , Pages 62-67 ; 9780738142753 (ISBN) Shoreh, A. A. H ; Kuznetsov, N. V ; Mokaev, T. N ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Synchronization of fractional-order hyperchaotic complex systems is an interesting phenomenon since it has several applications in applied sciences. Based on the complexity of hyperchaotic dynamical systems and unpredictability of hidden attractors, which may exist in their phase spaces and could be beneficial in secure communications, a scheme to derive the analytical formula of the control functions is stated to study active control synchronization. Further comparison of this analytical formula with numerical experiments yields an interesting agreement. A novel fractional-order complex Sprott system is proposed to study this kind of synchronization and its dynamics. A secure communication... 

    Effects of boundary layer control method on hydrodynamic characteristics and tip vortex creation of a hydrofoil

    , Article Polish Maritime Research ; Volume 24, Issue 2 , 2017 , Pages 27-39 ; 12332585 (ISSN) Ghadimi, P ; Tanha, A ; Kourabbasloo, N. N ; Tavakoli, S ; Sharif University of Technology
    De Gruyter Open Ltd  2017
    Abstract
    There is currently a significant focus on using boundary layer control (BLC) approach for controlling the flow around bodies, especially the foil sections. In marine engineering this is done with the hope of increasing the lift - to - drag ratio and efficiency of the hydrofoils. In this paper, effects of the method on hydrodynamic characteristics and tip vortex formation of a hydrofoil are studied. Steady water injection at the tip of the hydrofoil is simulated in different conditions by using ANSYS-CFX commercial software. Validity of the proposed simulations is verified by comparing the obtained results against available experimental data. Effects of the injection on the lift, drag, and... 

    A hierarchical thermo-mechanical multi-scale technique for modeling of edge dislocations in nano-crystalline structures

    , Article Computational Materials Science ; Volume 141 , 2018 , Pages 360-374 ; 09270256 (ISSN) Jahanshahi, M ; Khoei, A. R ; Heidarzadeh, N ; Jafarian, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, a hierarchical multi-scale technique is developed to investigate the thermo-mechanical behavior of nano-crystalline structures in the presence of edge dislocations. The primary edge dislocations are generated by proper adjustment of atomic positions to resemble discrete dislocations. The interatomic potential used to perform atomistic simulation is based on the Finnis-Sinclair embedded-atom method as many-body potential and, the Nose-Hoover thermostat is employed to control the effect of temperature. The strain energy density function is obtained for various representative volume elements under biaxial and shear loadings by fitting a fourth order polynomial in the atomistic... 

    Measuring the bullwhip effect in order-up-to policies with continuous and periodic review: A system dynamics simulation approach

    , Article International Conference on Risk Management and Engineering Management, Toronto, ON, 18 April 2008 through 18 April 2008 ; 2008 , Pages 24-29 ; 9780978348458 (ISBN) Kianfar, S ; Saeidi, A ; Esfahani, N. N ; Akbari, R ; Sharif University of Technology
    2008
    Abstract
    The inventory replenishment policy exploited by a supply chain has a principle role in amplification of order variability compared to fluctuations in customers' demands. This phenomenon is known as the bullwhip effect. In this paper, a four echelon supply chain is simulated and the impacts of continuous and periodic review order-up-to policies on the bullwhip effect are examined. Experiments have been conducted to analyze the influence of the lead time in deterministic conditions, and also the variance of demand and lead time in stochastic circumstances on the bullwhip effect and the corresponding cost. It was observed that in low demand and lead time variances, it is more efficient to... 

    Investigation on microwave absorption characteristics of ternary MWCNTs/CoFe2O4/FeCo nanocomposite coated with conductive PEDOT-Polyaniline Co-polymers

    , Article Ceramics International ; Volume 47, Issue 9 , 2021 , Pages 12244-12251 ; 02728842 (ISSN) Cao, Y ; Farouk, N ; Mortezaei, N ; Yumashev, A. V ; Niaz Akhtar, M ; Arabmarkadeh, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, ternary MWCNTs/CoFe2O4/FeCo nanocomposite coated with conductive PEDOT-polyaniline (PA@MW/F/C) co-polymers were synthesized by microwave-assisted sol-gel followed in-situ polymerization methods. The phases, crystal structures, morphologies, magnetic and electromagnetic features of the as-prepared samples were identified via XRD, SEM, XPS, VSM, and VNA respectively. Absorption characteristics were investigated in the frequency (12–18 GHz) Ku band. XRD, VSM and SEM analysis confirmed the partial reduction process of CoFe2O4 and successfully decorated magneto-dielectric particles with co-polymers. By measuring electromagnetic features of the samples, it was found that coating... 

    Formation and Economic Study on Hydrate Technology with NGH Pellets

    , Article Journal of Dispersion Science and Technology ; Volume 34, Issue 2 , 2013 , Pages 259-267 ; 01932691 (ISSN) Tamsilian, Y ; Ebrahimi, A. N ; Ramazani S. A., A ; Sharif University of Technology
    2013
    Abstract
    This study presents economic and formation investigations on hydration effects by looking at natural gas hydrate (NGH) storage and transportation processes and formation conditions. The investigation includes experiments with methane. The obtained results show that the methane formation time increased linearly as the subcooling temperature decreased. Furthermore, the economic result indicates that the energy consumption parameter is appropriate for examining resource consumption for a system that, in turn, results in optimal capital investment through the storage and transportation process of NGH. The results also show that energy consumption increases logarithmically as the hydrate... 

    An experimental study on holdup measurement in fluidized bed by light transmission

    , Article World Academy of Science, Engineering and Technology ; Volume 57 , 2009 , Pages 308-312 ; 2010376X (ISSN) Shahbazali, E ; Afrasiabi, N ; Safekordi, A. A ; Sharif University of Technology
    2009
    Abstract
    Nowadays, fluidized bed plays an important part in industry. The design of this kind of reactor requires knowing the interfacial area between two phases and this interfacial area leads to calculate the solid holdup in the bed. Consequently achieving interfacial area between gas and solid in the bed experimentally is so significant. On interfacial area measurement in fluidized bed with gas has been worked, but light transmission technique has been used less. Therefore, in the current research the possibility of using of this technique and its accuracy are investigated. Measuring, a fluidized bed was designed and the problems were averted as far as possible. By using fine solid with equal... 

    Carbon-based nanocomposite decorated with bioactive glass and CoNi2S4 nanoparticles with potential for bone tissue engineering

    , Article OpenNano ; Volume 8 , 2022 ; 23529520 (ISSN) Bagherzadeh, M ; Aldhaher, A ; Ahmadi, S ; Baheiraei, N ; Rabiee, N ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    In this work, for the first time, different forms of nanocomposites based on rGO and MWCNT were prepared in conjoining with the bioactive glass (BioGlass). In the carbonic layers, a highly toxic nanoparticle, CoNi2S4, was intercalated, and the role of this nanoparticle in the alkaline phosphatase activity, relative cell viability on different cell lines, and also the effect on the cell walls and cell morphologies were investigated. From another perspective, the ability of the chemotherapy drug loading to the prepared nanocomposites was investigated, and the use of leaf extracts was thought of as a green method to lower the cytotoxicity and regulate the genotoxicity of the generated... 

    Targeted nanomedicines for the treatment of bone disease and regeneration

    , Article Medicinal Research Reviews ; 2020 Ordikhani, F ; Zandi, N ; Mazaheri, M ; Luther, G. A ; Ghovvati, M ; Akbarzadeh, A ; Annabi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical... 

    Synthesis and characterizations of Co–Zr doped Ni ferrite/PANI nanocomposites for photocatalytic methyl orange dye degradation

    , Article Physica B: Condensed Matter ; Volume 624 , 2022 ; 09214526 (ISSN) Aamir, M ; Aleem, W ; Akhtar, M. N ; Din, A. A ; Yasmeen, G ; Ashiq, M. N ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Co–Zr doped Ni ferrite substituted polyaniline (PANI) nanocomposites were prepared using polymerization reaction method. NiFeCo0.5Zr0.5O4 with 12.5%, 25%, 37.5% and 50% PANI (A1, A2, A3 and A4) were used to obtain better photocatalytic efficiency. XRD, UV/VIS, BET, and FESEM were employed to characterize the PANI/ferrite nanocomposites. The effect of reaction time and nanoparticle concentrations on the photocatalytic degradation were thoroughly evaluated. XRD analysis confirmed the phase of NiFeCo0·5Zr0·5O4ferrite, while FESEM analysis was performed to investigate the surface morphology of the nanocomposites. The crystallinity was increased with the Co–Zr doped Ni ferrite contents in the... 

    Targeted nanomedicines for the treatment of bone disease and regeneration

    , Article Medicinal Research Reviews ; Volume 41, Issue 3 , 2021 , Pages 1221-1254 ; 01986325 (ISSN) Ordikhani, F ; Zandi, N ; Mazaheri, M ; Luther, G. A ; Ghovvati, M ; Akbarzadeh, A ; Annabi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical...