Loading...
Search for: hatamie--s
0.005 seconds

    Simultaneous gene delivery and tracking through preparation of photo-luminescent nanoparticles based on graphene quantum dots and chimeric peptides

    , Article Scientific Reports ; Volume 7, Issue 1 , 2017 ; 20452322 (ISSN) Moasses Ghafary, S ; Nikkhah, M ; Hatamie, S ; Hosseinkhani, S ; Sharif University of Technology
    Abstract
    Designing suitable nano-carriers for simultaneous gene delivery and tracking is in the research priorities of the molecular medicine. Non-toxic graphene quantum dots (GQDs) with two different (green and red) emission colors are synthesized by Hummer's method and characterized by UV-Vis, Photoluminescence (PL), Fourier Transform Infrared (FTIR) and Raman spectroscopies, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The GQDs are conjugated with MPG-2H1 chimeric peptide and plasmid DNA (pDNA) by non-covalent interactions. Following conjugation, the average diameter of the prepared GQDs increased from 80 nm to 280 nm in complex... 

    Curcumin as a green fluorescent label to revive the fluorescence property of functionalized graphene oxide nanosheets

    , Article Journal of Drug Delivery Science and Technology ; Volume 45 , June , 2018 , Pages 422-427 ; 17732247 (ISSN) Akbari, E ; Akhavan, O ; Hatamie, S ; Rahighi, R ; Sharif University of Technology
    Editions de Sante  2018
    Abstract
    In this work, graphene oxide (GO) aqueous suspensions prepared by a chemical exfoliation method showed a fluorescence peak at ∼615 nm. Photoluminescence spectroscopy determined that functionalization of the GO sheets by 3-(2-Aminoethylamino) propyltrimethoxysilane molecules significantly quench the fluorescence property of the GO sheets. Fourier transform infrared spectroscopy confirmed proper functionalization of the GO sheets. Curcumin was applied as a fluorescent natural material with an emission peak at ∼550 nm wavelength for green fluorescent labeling of the functionalized-GO sheets. The curcumin-labeled functionalized-GO sheets showed an intense emission band fluorescent property with... 

    Numerical study on racking behavior of light steel frames with K-shaped bracing

    , Article World Journal of Engineering ; Volume 16, Issue 2 , 2019 , Pages 238-247 ; 17085284 (ISSN) Kazemi, M. J ; Hatami, S ; Zare, A ; Parvaneh, A ; Sharif University of Technology
    Emerald Group Publishing Ltd  2019
    Abstract
    Purpose: This paper aims to study the lateral behavior of cold-formed steel walls with K-shaped bracing by finite element modeling. Design/methodology/approach: The braces which have the same section as those for studs and tracks are connected to the frame by screw connections. By pushover analysis, lateral performance of two frame categories, with different dimensions and bracing arrangements, is examined, and the force-displacement diagram and the ultimate strength of walls are extracted. Probable failure modes during lateral loading including distortional buckling of studs, buckling in braces and failure of connections are simulated in the numerical model, and some strengthening... 

    Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets

    , Article Carbon ; Volume 66 , January , 2014 , Pages 395-406 Akhavan, O ; Ghaderi, E ; Abouei, E ; Hatamie, S ; Ghasemi, E ; Sharif University of Technology
    Abstract
    Asian red ginseng was used for green reduction of chemically exfoliated graphene oxide (GO) into reduced graphene oxide (rGO). The reduction level and electrical conductivity of the ginseng-rGO sheets were comparable to those of hydrazine-rGO ones. Reduction by ginseng resulted in repairing the sp 2 graphitic structure of the rGO, while hydrazine-rGO showed more defects and/or smaller aromatic domains. The ginseng-rGO sheets presented a better stability against aggregation than the hydrazine-rGO ones in an aqueous suspension. Whilst the hydrophobic hydrazine-rGO films exhibited no toxicity against human neural stem cells (hNSCs), the hydrophilic GO and ginseng-rGO films (as more... 

    Detecting hydrogen using graphene quantum dots/WO3 thin films

    , Article Materials Research Express ; Volume 3, Issue 11 , 2016 ; 20531591 (ISSN) Fardindoost, S ; Iraji Zad, A ; Hosseini, Z. S ; Hatamie, S ; Sharif University of Technology
    Institute of Physics Publishing 
    Abstract
    In the present work we report an approach to resistive hydrogen sensing based on graphene quantum dots(GQDs)/WO3 thin films that work reproducibly at low temperatures. GQDs were chemically synthesized and evenly dispersed in WO3 solution with 1:1 molar ratio. The structural evaluation and crystallization of the prepared films was studied by X-ray diffraction, Raman and scanning electron microscopy (SEM) techniques. The SEM images showed uniform distribution of the GQDs in WO3 films with sizes around 50 nm. Raman experiment showed the GQDs are partially reduced with high edge defects as hydroxyl and carboxyl groups which involve both in bridging between WO3 grains via bindings as well as... 

    Enhanced thermal stability and biocompatibility of gold nanorods by graphene oxide

    , Article Plasmonics ; 2017 , Pages 1-10 ; 15571955 (ISSN) Shirshahi, V ; Hatamie, S ; Tabatabaei, S. N ; Salimi, M ; Saber, R ; Sharif University of Technology
    Abstract
    In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C... 

    A new approach to flexible humidity sensors using graphene quantum dots

    , Article Journal of Materials Chemistry C ; Volume 5, Issue 35 , 2017 , Pages 8966-8973 ; 20507534 (ISSN) Hosseini, Z. S ; Iraji Zad, A ; Ghiass, M. A ; Fardindoost, S ; Hatamie, S ; Sharif University of Technology
    Abstract
    Highly sensitive flexible humidity sensors based on graphene quantum dots (GQDs) were developed. The GQDs were prepared using a facile hydrothermal method and characterized considering morphological, structural, and compositional experiments. Then, their humidity sensing properties in correlation with flexibility characteristics were investigated. Good selectivity and response (∼390 for a RH change of 99%), broad detection range (1-100% RH), rather short response and recovery times (12 and 43 s, respectively) as well as flexibility were obtained, demonstrating that the GQD sensors have potential for application in wearable electronics and RH monitoring. Detection of hydrogen (H2) gas by the... 

    Enhanced thermal stability and biocompatibility of gold nanorods by graphene oxide

    , Article Plasmonics ; Volume 13, Issue 5 , 2018 , Pages 1585-1594 ; 15571955 (ISSN) Shirshahi, V ; Hatamie, S ; Tabatabaei, S. N ; Salimi, M ; Saber, R ; Sharif University of Technology
    Abstract
    In the present study, the effect of nanosized graphene oxide layer on thermal stability and biocompatibility of gold nanorods has been examined. The graphene oxide-wrapped gold nanorods were prepared by electrostatic interaction between negatively charged graphene oxide and positively charged nanorods. The resulting nanohybrids were then heated at different time intervals to 95 °C in a water bath to assess the effect of heat on the rods morphology. The structural changes in gold nanorods were monitored via UV-Vis spectroscopy measurements and transmission electron microscopy images. In similar experiments, the graphene oxide used to wrap gold nanorods was reduced by ascorbic acid in a 95 °C... 

    Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO)

    , Article Nanotechnology ; Volume 29, Issue 1 , 2018 ; 09574484 (ISSN) Fardindoost, S ; Hatamie, S ; Zad, A. I ; Astaraei, F. R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    This paper reports on hydrogen sensing based graphene oxide hybrid with Co-based metal organic frameworks (Co-MOFs@GO) prepared by the hydrothermal process. The texture and morphology of the hybrid were characterized by powder x-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Porous flower like structures assembled from Co-MOFs and GO flakes with sufficient specific surface area are obtained, which are ideal for gas molecules diffusion and interactions. Sensing performance of Co-MOFs@GO were tested and also improved by sputtering platinum (Pt) as a catalyst. The Pt-sputtered Co-MOFs@GO show outstanding hydrogen resistive-sensing with response and recovery... 

    Model fuel deep desulfurization using modified 3D graphenic adsorbents: Isotherm, kinetic, and thermodynamic study

    , Article Industrial and Engineering Chemistry Research ; Volume 58, Issue 24 , 2019 , Pages 10341-10351 ; 08885885 (ISSN) Sedaghat, S ; Ahadian, M. M ; Jafarian, M ; Hatamie, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Three-dimensional graphenic adsorbents have been successfully synthesized by hydrothermal reduction and applied for deep removal of dibenzothiophene (DBT) from model fuel. The nanoporous spongelike structure of the graphenic compounds was confirmed using various characterization techniques. Reduced graphene oxide (rGO), carbon black-graphene composite (CB-G), and nickel-impregnated graphene (Ni-G) showed adsorption capacities of 41.8, 46.9, and 43.3 mg of DBT g-1, respectively, and the DBT concentration in the model fuel was diminished to less than 10 ppm. Thermodynamic parameters for the adsorption process evidenced feasible and exothermic adsorption on rGO and CB-G with negative enthalpy... 

    The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets

    , Article Biomedical Materials (Bristol) ; Volume 11, Issue 2 , 2016 ; 17486041 (ISSN) Mahmoudifard, M ; Soleimani, M ; Hatamie, S ; Zamanlui, S ; Ranjbarvan, P ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2016
    Abstract
    Electrospinning of composite polymer solutions provides fantastic potential to prepare novel nanofibers for use in a variety of applications. The addition of graphene (G) and graphene oxide (GO) nanosheets to bioactive polymers was found to enhance their conductivity and biocompatibility. Composite conductive nanofibers of polyaniline (PANI) and polyacrylonitrile (PAN) with G and GO nanosheets were prepared by an electrospinning process. The fabricated membranes were investigated by physical and chemical examinations including scanning electron microscopy (SEM), Raman spectroscopy, x-ray diffraction (XRD) and tensile assay. The muscle satellite cells enriched by a pre-plating technique were... 

    Biocompatibility and hyperthermia efficiency of sonochemically synthesized magnetic nanoparticles

    , Article SPIN ; Volume 9, Issue 2 , 2019 ; 20103247 (ISSN) Talebi, M ; Malaie Balasi, Z ; Ahadian, M. M ; Hatamie, S ; Shahsavari Alavijeh, M. H ; Ghafuri, H ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    Hereby, a sonochemical method for synthesis of pure magnetic Fe3O4Onanoparticles (Fe3O4-NPs) in large scale is being introduced. Synthesis proceeds via simple approach, at room temperature, under sonication, using cheap reagents, green antioxidant-reductant reagent and without using inert gas purge as protective atmosphere condition. During this procedure, hydrogen gas releases continuously as valuable byproduct at the anaerobic step of reaction. Characterizations' results indicate that the final product is pure spherical Fe3O4-NPs, with narrow size distribution and about less than 32nm in mean diameter while more than 99% of particles size were less than 40nm. According to Vibrational... 

    Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells

    , Article Journal of Cellular Physiology ; Volume 234, Issue 8 , 2019 , Pages 13617-13628 ; 00219541 (ISSN) Esmaeili, E ; Soleimani, M ; Ghiass, M. A ; Hatamie, S ; Vakilian, S ; Zomorrod, M. S ; Sadeghzadeh, N ; Vossoughi, M ; Hosseinzadeh, S ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    While the differentiation factors have been widely used to differentiate mesenchymal stem cells (MSCs) into various cell types, they can cause harm at the same time. Therefore, it is beneficial to propose methods to differentiate MSCs without factors. Herein, magnetoelectric (ME) nanofibers were synthesized as the scaffold for the growth of MSCs and their differentiation into neural cells without factors. This nanocomposite takes the advantage of the synergies of the magnetostrictive filler, CoFe 2 O 4 nanoparticles (CFO), and piezoelectric polymer, polyvinylidene difluoride (PVDF). Graphene oxide nanosheets were decorated with CFO nanoparticles for a proper dispersion in the polymer through...