Loading...
Search for: eslami-mossallam--b
0.011 seconds

    Definition of the persistence length in the coarse-grained models of DNA elasticity

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 86, Issue 5 , November , 2012 ; 15393755 (ISSN) Fathizadeh, A ; Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2012
    Abstract
    By considering the detailed structure of DNA in the base pair level, two possible definitions of the persistence length are compared. One definition is related to the orientation of the terminal base pairs, and the other is based on the vectors which connect two adjacent base pairs at each end of the molecule. It is shown that although these definitions approach each other for long DNA molecules, they are dramatically different on short length scales. We show analytically that the difference mostly comes from the shear flexibility of the molecule and can be used to measure the shear modulus of DNA  

    Confinement dynamics of a semiflexible chain inside nano-spheres

    , Article Journal of Chemical Physics ; Volume 139, Issue 4 , 2013 ; 00219606 (ISSN) Fathizadeh, A ; Heidari, M ; Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2013
    Abstract
    We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the... 

    Extreme bendability of DNA double helix due to bending asymmetry

    , Article Journal of Chemical Physics ; Volume 143, Issue 10 , 2015 ; 00219606 (ISSN) Salari, H ; Eslami Mossallam, B ; Naderi, S ; Ejtehadi, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    Experimental data of the DNA cyclization (J-factor) at short length scales exceed the theoretical expectation based on the wormlike chain (WLC) model by several orders of magnitude. Here, we propose that asymmetric bending rigidity of the double helix in the groove direction can be responsible for extreme bendability of DNA at short length scales and it also facilitates DNA loop formation at these lengths. To account for the bending asymmetry, we consider the asymmetric elastic rod (AER) model which has been introduced and parametrized in an earlier study [B. Eslami-Mossallam and M. R. Ejtehadi, Phys. Rev. E 80, 011919 (2009)]. Exploiting a coarse grained representation of the DNA molecule... 

    Stiffer double-stranded DNA in two-dimensional confinement due to bending anisotropy

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 94, Issue 6 , 2016 ; 15393755 (ISSN) Salari, H ; Eslami Mossallam, B ; Ranjbar, H. F ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2016
    Abstract
    Using analytical approach and Monte Carlo (MC) simulations, we study the elastic behavior of the intrinsically twisted elastic ribbons with bending anisotropy, such as double-stranded DNA (dsDNA), in two-dimensional (2D) confinement. We show that, due to the bending anisotropy, the persistence length of dsDNA in 2D conformations is always greater than three-dimensional (3D) conformations. This result is in consistence with the measured values for DNA persistence length in 2D and 3D in equal biological conditions. We also show that in two dimensions, an anisotropic, intrinsically twisted polymer exhibits an implicit twist-bend coupling, which leads to the transient curvature increasing with a...