Loading...
Search for: dolati--s
0.12 seconds

    A study on the kinetics of Co-Ni/Cu multilayer electrodeposition in sulfate solution

    , Article Materials Chemistry and Physics ; Volume 108, Issue 2-3 , 2008 , Pages 391-396 ; 02540584 (ISSN) Dolati, A ; Mahshid, S. S ; Sharif University of Technology
    2008
    Abstract
    Electrodeposition of the Co-Ni/Cu multilayer films was carried out in sulfate solution. Cyclic voltammetry and current transient techniques were utilized to characterize the multilayer system and to obtain the nucleation and growth mechanism. The cyclic voltammograms clearly showed that electrodeposition of cobalt-nickel alloy layer was controlled by a kinetic process, where copper ions were reduced under diffusion-controlled mechanism. In addition, the current transients revealed that nucleation mechanism was instantaneous with a typical three-dimensional growth process. The microstructure of the Co-Ni/Cu films was also changed with overpotential. In this system, the growth of multilayer... 

    Ductile behavior of existing internal end diaphragms in steel tub girder bridges

    , Article Journal of Constructional Steel Research ; Volume 153 , 2019 , Pages 356-371 ; 0143974X (ISSN) Dolati, A ; Maleki, S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In steel tub girder bridges, end diaphragms transmit vertical and lateral loads to the substructure. Vulnerable response of steel diaphragms in recent strong ground motions has encouraged the researchers to work on their application as seismic force reducing devices for design and retrofitting of bridges. This study is an attempt to achieve a ductile diaphragm behavior under seismic actions by using existing internal end plate diaphragm of steel tub girder bridges. Considerable elastic stiffness and dominant shear behavior of the end diaphragm has made it a suitable choice for such behavior under seismic actions. Nonlinear quasi-static analyses using nineteen different finite element models... 

    DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode

    , Article Analytica Chimica Acta ; Vol. 836, issue , July , 2014 , p. 34-44 ; ISSN: 00032670 Fayazfar, H ; Afshar, A ; Dolati, M ; Dolati, A ; Sharif University of Technology
    2014
    Abstract
    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended... 

    Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

    , Article Journal of Chemical Sciences ; Volume 129, Issue 9 , 2017 , Pages 1399-1410 ; 09743626 (ISSN) Mokarami Ghartavol, H ; Moakhar, R. S ; Dolati, A ; Sharif University of Technology
    2017
    Abstract
    Abstract: The electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/fluorine-doped tin oxide glass (FTO) was investigated. Nucleation and growth mechanisms were studied via Scharifker and Hills model. Chronoamperometry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficient is 1.5×10-5cm2/s. The semi-spherical particles with lamellar morphology were observed in 1M H 2SO 4, while a petal shape was discerned in 0.5M H 2SO 4. Also, dispersion, size, and uniformity of PtNPs were investigated, where the finer distribution of PtNPs with the average size less than 100 nm was obtained in 0.5M H 2SO 4... 

    Preparation of new superhydrophobic and highly oleophobic polyurethane coating with enhanced mechanical durability

    , Article Applied Surface Science ; Volume 454 , 2018 , Pages 201-209 ; 01694332 (ISSN) Yousefi, E ; Ghadimi, M. R ; Amirpoor, S ; Dolati, A ; Sharif University of Technology
    2018
    Abstract
    In this study, a noble robust superhydrophobic and highly oleophobic polyurethane (PU)–SiO2 nanoparticle (NP) coating is specially designed using sol-gel process. For this purpose the effective parameters on surface tension and durability of the synthesized coating investigated and optimized. This new superhydrophobic and highly oleophobic coating exhibits good pensile hardness as high as 6H with adhesive force grade of 5B and repels water and oil with contact angles (CAs) of 159° and 140° respectively. The synthesized PU-SiO2 composite also retains an excellent amphiphobicity after a 7 days immersion in water with water and oil with CAs of 150° and 130°. Facile fabrication of PU–SiO2... 

    Carbon-Pt nanoparticles modified TiO 2 nanotubes for simultaneous detection of dopamine and uric acid

    , Article Journal of Nanoscience and Nanotechnology ; Volume 11, Issue 8 , 2011 , Pages 6668-6675 ; 15334880 (ISSN) Mahshid, S ; Luo, S ; Yang, L ; Mahshid, S. S ; Askari, M ; Dolati, A ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    The present work describes sensing application of modified TiO 2 nanotubes having carbon-Pt nanoparticles for simultaneous detection of dopamine and uric acid. The TiO 2 nanotubes electrode was prepared using anodizing method, followed by electrodeposition of Pt nanoparticles onto the tubes. Carbon was deposited by decomposition of polyethylene glycol in a tube furnace to improve the conductivity. The C-Pt-TiO 2 nanotubes modified electrode was characterized by cyclic voltam-metry and differential pulse voltammetry methods. The modified electrode displayed high sensitivity towards the oxidation of dopamine and uric acid in a phosphate buffer solution (pH 7.00). The electro-oxidation currents... 

    A well-dispersed Pt/Ni/TiO 2 nanotubes modified electrode as an amperometric non-enzymatic glucose biosensor

    , Article Sensor Letters ; Volume 9, Issue 5 , October , 2011 , Pages 1598-1605 ; 1546198X (ISSN) Mahshid, S. S ; Luo, S ; Yang, L ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    In this study a novel Pt/Ni nanostructure consisting of nano-bushes and nanocubes was fabricated onto TiO 2 nanotubes. The scanning electron microscopy images showed that a large amount of well-dispersed nano-architectures had uniformly covered all over the surface which made an electrode with high surface area. It was obviously seen that the nanocube structures mainly consists of Ni had been grown on top of each other while the Pt colonies represented bush-like structures. As a non-enzymatic glucose biosensor, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an excellent performance. The proposed biosensor had two linear ranges for detection of glucose from 0 to 0.12 mM (correlation... 

    Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 551-555 ; 00134686 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    An electro-catalysis non-enzymatic electrode is proposed based on alloyed Pt/Ni nanowire arrays (NWAs) for the detection of glucose. The Pt/Ni NWAs were prepared by pulse electrodeposition of Pt and Ni within a nano-pore polycarbonate (PC) membrane followed by a chemical etching of the membrane. The electrode structure is characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting Pt/Ni NWAs electrode shows high electrocatalytic activities towards the oxidation of glucose in alkaline solution. Consequently, a sensitive amperometric detection of glucose is achieved under 0.45 V vs. SCE with a low detection limit of 1.5 μM within a wide linear... 

    Electrodeposition and electrocatalytic properties of Pt/Ni-Co nanowires for non-enzymatic glucose detection

    , Article Journal of Alloys and Compounds ; Volume 554 , 2013 , Pages 169-176 ; 09258388 (ISSN) Mahshid, S. S ; Mahshid, S ; Dolati, A ; Ghorbani, M ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2013
    Abstract
    A nanowire arrays system consisting of an ordered configuration of Pt, Ni and Co was constructed in single-bath solution through pulse electrodeposition. This structure was evaluated as a potential amperometric non-enzymatic sensor to detect glucose in alkaline solution. We observed a strong and fast amperometric response at low applied potential of 0.4 V vs. SCE over linear ranges of 0-0.2 mM and 0.2-8 mM glucose with sensitivities of 1125 and 333 μA mM-1 cm-2, respectively. We also observed a low detection limit for glucose of 1 μM. Correlation of the electronic and geometric modifications with the electrochemical performance characteristics enhanced catalytic activity of the electrode by... 

    Field emission of Co nanowires in polycarbonate template

    , Article Thin Solid Films ; Volume 517, Issue 5 , 1 January , 2009 , Pages 1736-1739 ; 00406090 (ISSN) Azarian, A ; Iraji Zad, A ; Dolati, A ; Mahdavi, S. M ; Sharif University of Technology
    2009
    Abstract
    The Co nanowire arrays were synthesized by electrodeposition in polycarbonate template (PC) with 4 μm thickness. Electron field emission properties of cobalt nanowires were studied for wires with different aspect ratios, R ranged between 10 and 60, while the diameter of wires was fixed about 50 nm. The field emission properties of the samples showed low turn on electric field (Eto) with values varying between 2.9 and 11.3 V/μm showing a minimum value for R = 20 (Eto < 3 V/μm). On the other hand, the enhancement factor shows a peak for nanowires length about 1 μm. Field emission data using the Fowler-Nordhiem theory showed nearly straight-line nature confirming cold field emission of... 

    Electrocrystallization of Ni nanocones from chloride-based bath using crystal modifier by electrochemical methods

    , Article Journal of Alloys and Compounds ; Volume 818 , 2020 Barati Darband, G ; Aliofkhazraei, M ; Dolati, A ; Rouhaghdam, A. S ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The early stages of nucleation and growth of nanostructures can control the shape and final size of the fabricated nanostructure. Therefore, the study of the nucleation and growth mechanism of nanostructures is of great importance. The purpose of this study is to investigate the nucleation and growth mechanism of nickel nanocones from a chloride-based bath containing ethylene ammonium dichloride as a crystal modifier. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry tests were employed to investigate the nucleation and growth mechanism and also the mechanism of crystal modifier performance on the growth of nanocones. Electrochemical studies revealed... 

    Morphology and hydrogen sensing studies of the electrodeposited nanostructure palladium on porous silicon

    , Article International Journal of Nanotechnology ; Volume 6, Issue 10-11 , 2009 , Pages 892-901 ; 14757435 (ISSN) Astaraie, F. R ; Iraji zad, A ; Taghavi, N. S ; Abbaszadeh, D ; Dolati, A ; Mahshid, S. S ; Sharif University of Technology
    2009
    Abstract
    We have investigated hydrogen sensing properties of electrodeposited Pd clusters on macroporous silicon substrates. Porous layer was prepared by electrochemical etching of p-type silicon (100) wafer in organic electrolyte DMF (dimethylformamide) diluted by HF (%95 Vol. %). The deposition of Pd was carried out by linear voltammetry (LV) technique. This technique was taken for reduction of palladium ions in the potential range from 0.4 V to -1 V vs. SCE, at the scan rate of 20 mV s-1. Some samples were annealed at 300°C for an hour in air to study the effect of heat treatment on their gas sensitivity. Surface structural and chemical properties of the samples were characterised using Scanning... 

    Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles

    , Article Analyst ; Volume 136, Issue 11 , 2011 , Pages 2322-2329 ; 00032654 (ISSN) Mahshid, S ; Li, C ; Mahshid, S. S ; Askari, M ; Dolati, A ; Yang, L ; Luo, S ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    A simple modified TiO2 nanotubes electrode was fabricated by electrodeposition of Pd, Pt and Au nanoparticles. The TiO2 nanotubes electrode was prepared using the anodizing method, followed by modifying Pd nanoparticles onto the tubes surface, offering a uniform conductive surface for electrodeposition of Pt and Au. The performance of the modified electrode was characterized by cyclic voltammetry and differential pulse voltammetry methods. The Au/Pt/Pd/TiO2 NTs modified electrode represented a high sensitivity towards individual detection of dopamine as well as simultaneous detection of dopamine and uric acid using 0.1 M phosphate buffer solution (pH 7.00) as the base solution. In both case,... 

    The Pt/Ni modified TiO 2 nanotubes and its catalytic activity toward glucose

    , Article ECS Transactions, 1 May 2011 through 6 May 2011 ; Volume 35, Issue 35 , May , 2011 , Pages 63-69 ; 19385862 (ISSN) ; 9781607682950 (ISBN) Mahshid, S. S ; Mahshid, S ; Ghahremaninezhad, A ; Dolati, A ; Ghorbani, M ; Luo, S ; Yang, L ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    The catalytic activity of Pt/Ni/TiO 2 nanotubes electrode toward glucose has been studied. Fabrication of Pt/Ni nanostructures was done in a single-bath solution through electrochemical pulse method by changing the deposition potential between -0.3 and -4 V vs. SCE, respectively. The resulting modified electrode represented high conductivity due to the effective presence of metallic components and uniform surface area caused by dispersion of Pt and Ni nanostructures. The scanning electron microscopy images also confirmed that a large amount of metals colonies were well-dispersed at the edge of the TiO 2 nanotubes. In addition, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an... 

    Design and fabrication of a highly efficient, stable and durable new wettability coated stainless steel mesh for oil/water separation

    , Article Materials Letters ; Volume 256 , 2019 ; 0167577X (ISSN) Ghadimi, M. R ; Azad, M ; Amirpoor, S ; Siavash Moakhar, R ; Dolati, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The separation of water-oil mixtures has attracted widespread attention because of the increasing amounts of oily wastewater produced from the daily activities of humans and different industrial processes. Therefore, the development of facile and efficient oil-water separation technologies is imperative. In this work, a new highly superhydrophilic-superoleophobic coated stainless steel mesh was fabricated using virtue of the surface modification of poly (BzVimBr-Vim)@PFOA@SiO2 nanoparticles (NPs) through a facile preparation process. The new fabricated superhydrophilic and highly oleophobic coating exhibits good adhesive properties. The oil contact angle (OCA) and water contact angle (WCA)... 

    Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation

    , Article Journal of Coatings Technology and Research ; 2020 Ghadimi, M. R ; Siavash Moakhar, R ; Amirpoor, S ; Azad, M ; Dolati, A ; Sharif University of Technology
    Springer  2020
    Abstract
    The design and development of efficient approaches for water–oil separation have had widespread interest. Most previously introduced techniques and materials used for development of the successful separation of oily wastewater could not answer all the desired demands, such as being efficient and environmentally and economically friendly. Therefore, in seeking a novel method capable of answering these expectations, surfaces with special wettability were introduced. A novel, reusable, and recyclable superhydrophilic and superoleophobic poly(Vsim-Vim)@PFOA@SiO2 nanocomposite-coated stainless steel mesh was synthesized through a facile preparation process. Since the most important factors of... 

    Developing a new superhydrophilic and superoleophobic poly(4-(1-vinyl-1H-imidazol-3-ium-3-yl) butane-1-sulfonate): vinyl imidazole@Perfluorooctanoic acid@SiO2 coated stainless steel mesh for highly efficient, stable, and durable oil/water separation

    , Article Journal of Coatings Technology and Research ; Volume 18, Issue 2 , 2021 , Pages 511-521 ; 15470091 (ISSN) Ghadimi, M. R ; Siavash Moakhar, R ; Amirpoor, S ; Azad, M ; Dolati, A ; Sharif University of Technology
    Springer  2021
    Abstract
    The design and development of efficient approaches for water–oil separation have had widespread interest. Most previously introduced techniques and materials used for development of the successful separation of oily wastewater could not answer all the desired demands, such as being efficient and environmentally and economically friendly. Therefore, in seeking a novel method capable of answering these expectations, surfaces with special wettability were introduced. A novel, reusable, and recyclable superhydrophilic and superoleophobic poly(Vsim-Vim)@PFOA@SiO2 nanocomposite-coated stainless steel mesh was synthesized through a facile preparation process. Since the most important factors of... 

    Electrodeposition of Ni-Co/SiC Composite Coatings

    , M.Sc. Thesis Sharif University of Technology Bahadormanesh, Behrouz (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Ni-Co/SiC composite coatings with various contents of SiC nano particles were electrodeposited in a modified watt type of Ni-Co bath containing 20 nm SiC nano particles to be codeposited. The influences of the SiC concentration, current density, stirring rate of the deposition bath on the composition of the coatings were investigated and these parameters optimized for highest amount of SiC codeposition. The optimized deposition parameters were 40 g/l SiC and 480 rpm stirring rate and current density equal to 4 A/dm2. Ni-Co/SiC composite coating was deposited with the maximum particles content of 30.5 volume percent. Linear voltammetry demonstrates addition of the SiC to the Ni-Co deposition... 

    Cathodic Protection of Concrete by Zinc Sacrificial Anode in Persian Gulf Sea Water

    , M.Sc. Thesis Sharif University of Technology Cheraghali, Behrouz (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Many of the major structure over coastal waters in the Kish Island due to the aggressive condition are showing signs of reinforcement corrosion. Recent advances in the development of anodes make it practical to use zinc galvanic cathodic protection to protect this structure in this area. Five anode systems were tested on several samples as, (1) zinc metal spray applied by arc-spraying on the concrete, (2) a zinc foil with conductive adhesive backing, (3) a system of zinc mesh and grout jacket, (4) a system of zinc mesh and compression panels, and (5) a bulk zinc. These anodes are set up to comparison the effects of potential and current over the zinc galvanic cathodic protection during 4... 

    Electrodepositon of Platinum Nanotubes

    , M.Sc. Thesis Sharif University of Technology Yousefi, Elahe (Author) ; Dolati, Abolghasem (Supervisor)
    Abstract
    Platinum nanotubes were deposited inside the pores of polycarbonate template with the pore size of 200 nm by electrochemical methods. In this regard a solution containing of 0.05 M H2PtCl6 and 0. 1 M H2SO4 in doubly distilled water was utilized. The electrodeposition process was studied by electrochemical techniques such as voltammetry and chronoamperometry methods. It was observed that the process was conducted in several stages including; nucleation and growth in steady state regime. Furthermore, it was concluded that electrodeposition was affected by mass transport restriction and was controlled by a diffusion process. In this regard, all the voltammograms were shifted to more negative...