Loading...
Search for: dolati--a
0.01 seconds
Total 105 records

    Synthesis and electrochemical characterization of sol-gel-derived RuO 2/carbon nanotube composites

    , Article Journal of Solid State Electrochemistry ; Vol. 18, Issue 4 , April , 2014 , pp. 993-1003 ; Online ISSN: 1433-0768 Kahram, M ; Asnavandi, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol-gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission... 

    Effect of content silver and heat treatment temperature on morphological, optical, and electrical properties of ITO films by sol-gel technique

    , Article Journal of Nanoparticle Research ; Volume 16, Issue 9 , September , 2014 ; ISSN: 13880764 Mirzaee, M ; Dolati, A ; Sharif University of Technology
    Abstract
    Silver-doped indium tin oxide thin films were synthesized using sol-gel dip-coating technique. The influence of different silver-dopant contents and annealing temperature on the electrical, optical, structural, and morphological properties of the films were characterized by means of four-point probe, UV-Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope (XPS). XRD analysis confirmed the formation of cubic bixbyte structure of In2O3with silver nanoparticles annealed at 350 °C. XPS analysis showed that divalent tin transformed to tetravalent tin through oxidization, and silver nanoparticles embedded into ITO... 

    Tantalum electrodes modified with well-aligned carbon nanotube-au nanoparticles: application to the highly sensitive electrochemical determination of cefazolin

    , Article Applied Biochemistry and Biotechnology ; Volume 173, Issue 6 , July 2014 , Pages 1511-1528 Fayazfar, H ; Afshar, A ; Dolati, A ; Sharif University of Technology
    Abstract
    Carbon nanotube/nanoparticle hybrid materials have been proven to exhibit high electrocatalytic activity suggesting broad potential applications in the field of electroanalysis. For the first time, modification of Ta electrode with aligned multi-walled carbon nanotubes/Au nanoparticles introduced for the sensitive determination of the antibiotic drug, cefazolin (CFZ). The electrochemical response characteristics of the modified electrode toward CFZ were investigated by means of cyclic and linear sweep voltammetry. The modified electrode showed an efficient catalytic activity for the reduction of CFZ, leading to a remarkable decrease in reduction overpotential and a significant increase of... 

    A study on the mechanism of electrodeposition of Ni/SiC composite coatings using impedance technique

    , Article ECS Transactions ; Volume 41, Issue 44 , 2012 , Pages 47-57 ; 19385862 (ISSN) ; 9781607683452 (ISBN) Sohrabi, A ; Dolati, A ; Electrodeposition; Sensor ; Sharif University of Technology
    2012
    Abstract
    Ni/SiC nanocomposite coatings were electrodeposited using Watts type bath and different SiC particle size. The electrodeposition behavior of Ni/SiC nanoelectrocomposites was studied using electrochemical techniques such as impedance spectroscopy (EIS) and voltammetry. In this study it was shown that SiC particles modify the EIS diagram and voltammograms as well as surface morphology of electrodeposited layers. Experimental results showed that SiC particles not only affect the formation of intermediate species and decrease charge transfer resistance but also increase the nucleation sites for nickel electrodeposition and thus affect the microstructure of electrodeposited Ni/SiC nanocomposites.... 

    Photoactive and self-cleaning TiO 2-SiO 2 thin films on 316L stainless steel

    , Article Thin Solid Films ; Volume 520, Issue 20 , 2012 , Pages 6355-6360 ; 00406090 (ISSN) Boroujeny, B. S ; Afshar, A ; Dolati, A ; Sharif University of Technology
    Abstract
    In this study, TiO 2-SiO 2 nanocomposite films with different amounts of SiO 2 were prepared by sol-gel process and were coated onto stainless steel 316L. The effect of addition of various amount of SiO 2 in the precursor solution on the photocatalysis, photo-generated hydrophilicity and self-cleaning property of TiO 2 thin films was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, water contact angle measurements and UV spectroscopy. In the tested ranges of SiO 2 content and sintering temperature, the highest photocatalytic activity and self-cleaning property were observed in the 15 mol% SiO 2 sample sintered at 750 °C. Addition of less than 30 mol% SiO 2 had a... 

    Electrodeposition of long gold nanotubes in polycarbonate templates as highly sensitive 3D nanoelectrode ensembles

    , Article Electrochimica Acta ; Volume 75 , 2012 , Pages 157-163 ; 00134686 (ISSN) Bahari Mollamahalle, Y ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Electrodeposition of long and well-defined gold nanotubes in polycarbonate (PC) templates is still a major concern due to pore blockage problems. In the present study, we introduce a novel method for electrodeposition of long gold nanotubes within the pores of PC templates for the first time. In order to deposit gold atoms onto the pore walls preferentially, pore walls were functionalized with a coupling agent. Short and thin Ni nanotubes were then electrodeposited at the bottom of the pores. Gold nanotubes were subsequently electrodeposited at constant potentials and low solution concentrations. The morphology of nanotubes was characterized by electron microscopy and their formation... 

    Electrodeposition of Ni/WC nano composite in sulfate solution

    , Article Materials Chemistry and Physics ; Volume 129, Issue 3 , 2011 , Pages 746-750 ; 02540584 (ISSN) Mohajeri, S ; Dolati, A ; Rezagholibeiki, S ; Sharif University of Technology
    Abstract
    Metal matrix composite coatings have gained great attention due to their exclusive properties. They have shown the properties of a metallic host material modified by addition of a second phase. In electrodeposition of Ni/WC nano composite, nickel was deposited on the substrates by DC electrodeposition in Watt's based bath containing nickel sulfate, nickel chloride, boric acid and sodium dodecyl sulfate. WC content in the coating was determined by different parameters such as current density, powder content and surfactant amount. Mechanism of electrodeposition was analyzed by cyclic voltammetry and was confirmed by Guglielmi model. Surface morphology was studied by scanning electron... 

    Electrochemical characterization of electrodeposited carbon nanotubes

    , Article Thin Solid Films ; Volume 519, Issue 19 , July , 2011 , Pages 6230-6235 ; 00406090 (ISSN) Fayazfar, H ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2011
    Abstract
    Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at - 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes... 

    Effects of tin valence on microstructure, optical, and electrical properties of ITO thin films prepared by sol–gel method

    , Article Journal of Sol-Gel Science and Technology ; Volume 75, Issue 3 , September , 2015 , Pages 582-592 ; 09280707 (ISSN) Mirzaee, M ; Dolati, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: This study aimed to understand the microstructural, optical, and electrical properties of tin-doped indium oxide (ITO) prepared with tetravalent and divalent tin salts. The influence of tin valence on the electrical, optical, structural, and morphological properties of the films were characterized by the mean of four-point probe, thermogravimetric analysis, differential thermal analysis (DTA), UV–Vis spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscope. XRD results revealed formation of cubic bixbyite structure of In2O3 with a small shift in major peak position toward lower angles with... 

    Electrodeposition of various au nanostructures on aligned carbon nanotubes as highly sensitive nanoelectrode ensembles

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 5 , May , 2015 , Pages 2005-2015 ; 10599495 (ISSN) Fayazfar, H ; Afshar, A ; Dolati, A ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    An efficient method has been developed to synthesize well-aligned multi-walled carbon nanotubes (MWCNTs) on a conductive Ta substrate by chemical vapor deposition. Free-standing MWCNTs arrays were functionalized through electrochemical oxidation with the formation of hydroxyl and carboxyl functional groups. Facile template-free electrochemical routes were then developed for the shape-selective synthesis of less-common Au nanostructures, including flower, sphere, dendrite, rod, sheet, and cabbage onto the aligned MWCNTs at room temperature. Especially, among all the synthesis methods for Au nanocrystals, this is the first report using electrochemical technique to synthesize wide variety... 

    The influence of pulse plating parameters on the electrocodeposition of Ni-TiO2 nanocomposite single layer and multilayer structures on copper substrates

    , Article Surface and Coatings Technology ; Volume 262 , 2015 , Pages 173-183 ; 02578972 (ISSN) Mohajeri, S ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The electrocodeposition of Ni-TiO2 nanocomposite single layers and Ni-TiO2/TiO2 multilayers from a Watts bath containing a TiO2 sol on copper substrates was investigated by different deposition techniques. Compared with direct current (DC) deposition, both pulse plating (PP) and pulse reverse plating (PRP) facilitated higher incorporations of TiO2 nanoparticles. Morphological studies conducted by scanning electron microscopy and field emission scanning electron microscopy revealed that the microstructure of the Ni-TiO2 nanocomposite coatings are affected both by pulse potentials and durations, indicating that higher incorporations of TiO2 nanoparticles refine the microstructure. The results... 

    Self-cleaning TiO2 nanofilms on FTO glass: Influence of electrophoretic deposition and UV irradiation conditions

    , Article Journal of Nano Research ; Volume 30 , 2015 , Pages 39-49 ; 16625250 (ISSN) Horandghadim, N ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2015
    Abstract
    In this research, anatase TiO2 nano-particles were electrophoretically deposited on the FTO glass. This investigation was focused on the self-cleaning property of TiO2 coatings and the effects of different parameters on this characteristic such as: applied voltages during electrophoretic depositions and durations of UV irradiation. Electrophoretic depositions of suspensions were performed in different voltages of 10, 30 and 60 V (for 10 s) at room temperature. TiO2 coatings were sintered in 450oC for 1 hr. The phase transformation of TiO2 films was considered using XRD. Morphology, average particle size and the thickness of TiO2 films was analyzed using FESEM microscope. The photocatalytic... 

    Hydrogen failure sensitivity of A516-Gr70 and API 5L-X70 steels in sour environments

    , Article Anti-Corrosion Methods and Materials ; Volume 62, Issue 5 , 2015 , Pages 294-300 ; 00035599 (ISSN) Taheri, H ; Dolati, A ; Beidokhti, B ; Sharif University of Technology
    Emerald Group Publishing Ltd  2015
    Abstract
    Purpose – This paper aims to clarify the corrosion behavior of two famous structural steels in sour environment. These steels have a vast application in oil and gas industries. The study aims to find the effect of different concentrations of sour solution on the origin of crack in these steels. Design/methodology/approach – After preparation of specimens, different sour solutions were made using the synthetic brine (according to National Association of Corrosion Engineers [NACE], Technical Committee Report 1D182) and various amounts of Na2S.9H2O and CH3COOH. The polarization test was done by Potansiostat apparatus model Zahner-IM6 at two temperatures, 25°C... 

    Diffusion-controlled growth model for electrodeposited cobalt nanowires in highly ordered aluminum oxide membrane

    , Article ECS Transactions, 25 April 2010 through 30 April 2010, Vancouver, BC ; Volume 28, Issue 17 , 2010 , Pages 13-25 ; 19385862 (ISSN) ; 9781607681939 (ISBN) Ghahremaninezhad, A ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    This work studies the electrochemical growth behavior of cobalt nanowires in highly ordered aluminum oxide membrane. Considering the electrodeposition of metallic nanowires, cation concentration profile in each nano pore was calculated. With assumption of linear diffusion zone on the growing surface of nanowires, a modified Cottrell equation was evaluated. To confirm the model, the Co nanowires were electrodeposited into porous anodic aluminum oxide (AAO) templates and the mechanism of deposition was studied. Comparing the results of model and the experiments has proved the accuracy of the model. Also, it was observed that the growth of the Co nanowires was controlled mainly by diffusion... 

    A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction

    , Article Journal of Applied Electrochemistry ; Volume 40, Issue 11 , November , 2010 , Pages 1941-1947 ; 0021891X (ISSN) Torabi, M ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    The electrodeposition of nickel was studied using electrochemical techniques in different electrolytes and various agents. The voltammetry analysis clearly showed that the electrodeposition of nickel was a diffusion-controlled process associated with a typical nucleation process. The current transients represented instantaneous nucleation with a typical three-dimensional (3D) growth mechanism. Scharifker's equations were derived for instantaneous and progressive nucleation of the 3D growth of the spherical centers under diffusion-controlled condition. The number of nucleation sites increased with the increment in overpotential and Ni 2+ concentration. Atomic force microscopy was used to... 

    An Investigation on the electrochemical behavior of the co/cu multilayer system

    , Article Journal of Nanoscience and Nanotechnology ; Volume 10, Issue 9 , September , 2010 , Pages 5964-5970 ; 15334880 (ISSN) Mahshid, S. S ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    Co/Cu multilayers were deposited in a sulfate solution by controlling the current and potential for the deposition of cobalt and copper layer respectively. The electrochemical behavior of these multilayers was studied by cyclic voltammetry and current transients. In addition, a mathematical analysis was used to characterize the electrodeposition system. Simultaneously, the nucleation and growth mechanisms were monitored by these techniques. In this case, the results clearly showed that electrodeposition of cobalt layers was a kinetically controlled process while the reduction of copper ions was a diffusion-control process. Although nucleation mechanism of the single Co deposit was found as a... 

    The kinetics of Ni-Co/SiC composite coatings electrodeposition

    , Article Journal of Alloys and Compounds ; Volume 504, Issue 2 , 2010 , Pages 514-518 ; 09258388 (ISSN) Bahadormanesh, B ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    Ni-Co/SiC composite coatings with various contents of SiC particles were electrodeposited in a modified Watt's type of Ni-Co bath containing suspended 20 nm SiC particles. Deposition parameters including current density, bath SiC concentration and magnetic stirring rate were optimized for the highest amount of the SiC codeposition: the current density of 4 A/dm2, 40 g/dm 3 SiC concentration and 480 rpm stirring rate. In order to study the SiC particles codeposition, the Guglielmi's model of codeposition was modified for high volume percentages of the second phase and the modified model was employed to explain the effects of deposition parameters on the kinetics of the particles codeposition.... 

    Electrochemical investigation of electrodeposited Fe-Pd alloy thin films

    , Article Electrochimica Acta ; Volume 56, Issue 1 , 2010 , Pages 483-490 ; 00134686 (ISSN) Rezaei, M ; Ghorbani, M ; Dolati, A ; Sharif University of Technology
    Abstract
    In the present study, the electrodeposition of Fe, Pd and Fe-Pd alloys, in alkaline solutions, has been investigated. Using ammonium hydroxide and trisodium citrate as the complexing agents, it has been shown that the co-deposition of Fe and Pd is achieved due to diminishing the difference between the reduction potentials of these two metals. Cyclic voltammetry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficients of Fe2+ and Pd2+ are 1.11 × 10-6 and 2.19 × 10-5 cm2 s -1, respectively. The step potential experiments reveal that nucleation mechanism is instantaneous with a typical three-dimensional (3D) growth. At low overpotentials,... 

    A study on the kinetics of gold nanowire electrodeposition in polycarbonate templates

    , Article Journal of Electroanalytical Chemistry ; Volume 645, Issue 1 , June , 2010 , Pages 28-34 ; 15726657 (ISSN) Soleimany, L ; Dolati, A ; Ghorbani, M ; Sharif University of Technology
    2010
    Abstract
    Electrodeposition of gold nanowires is carried out in cyanide solution in polycarbonate templates with pore diameter of 80 nm. Electrochemical methods are utilized to characterize the gold electrodeposition and to obtain the nucleation and growth mechanism. The analysis of cyclic voltammograms shows that the electrodeposition of gold nanowires takes place under diffusion control. Current transients reveal that nucleation mechanism is instantaneous with a three-dimensional growth process. The transition-time measurements show that the gold elecrodeposition occurs as one-electron valence involved in the reaction mechanism. Charge transfer coefficient is also found to be 0.67 ± 0.01. The value... 

    Numerical study of steel box girder bridge diaphragms

    , Article Earthquake and Structures ; Volume 11, Issue 4 , 2016 , Pages 681-699 ; 20927614 (ISSN) Maleki, S ; Mohammadinia, P ; Dolati, A ; Sharif University of Technology
    Techno Press  2016
    Abstract
    Steel box girders have two webs and two flanges on top that are usually connected with shear connectors to the concrete deck and are also known as tub girders. The end diaphragms of such bridges comprise of a stiffened steel plate welded to the inside of the girder at each end. The diaphragms play a major role in transferring vertical and lateral loads to the bearings and substructure. A review of literature shows that the cyclic behavior of diaphragms under earthquake loading has not been studied previously. This paper uses a nonlinear finite element model to study the behavior of the end diaphragms under gravity and seismic loads. Different bearing device and stiffener configurations have...