Loading...
Search for: dehghan-firouzabadi--rouhollah
0.135 seconds

    Aeroelastic Analysis of Flying Wing Aircrafts

    , M.Sc. Thesis Sharif University of Technology Joulaei, Mohammad Moin (Author) ; Dehghan Firouzabadi, Rouhollah (Supervisor) ; Haddadpour, Hassan (Supervisor)
    Abstract
    Purpose of this thesis is to discover the governing equation of Flying Wing aircrafts. In Flying Wing aircrafts crew, payload, fuel, and equipment are typically housed inside the main wing structure. A clean flying wing is sometimes presented as theoretically the most aerodynamically efficient (lowest drag) design configuration for a fixed wing aircraft. We assume Flying wing as plate. Achieve structural formulation needs to use modal deflections and put them in Lagrangian equations. In the right had side, pressure on flying wing can be found. To obtain air pressure on flying wing in this thesis, applying Quasi steady aerodynamic and Howe distribution is necessary. Applying this method on ... 

    Investigation of Vibration and Stability of Graphene NanoRibbone under Magnetic field Effect

    , Ph.D. Dissertation Sharif University of Technology Mohammadkhani, Hasan (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    This study aims at investigating the vibration analysis and stability of Graphene Nano-Ribbon (GNR) under a magnetic field using continuum mechanics approach and an efficient hybrid modal-molecular dynamics method. The force distribution on the GNR due to the magnetic field is determined by Maxwell's equations, Biot-savart law, magnetic dipoles and Lorentz force law.
    Using the continuum mechanics model, the vibration of the GNR in a magnetic field is investigated by some problems and the resonance frequencies, stability boundaries and critical load are studied.
    Furthermore, in this present study, an efficient hybrid modal-molecular dynamics method is developed for the vibration... 

    Aero-Hydro-Elastic Analysis of a Floating Beam in a Water Channel Subjected to Cross Wind

    , M.Sc. Thesis Sharif University of Technology Tavanbakhsh, Sadeq (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    In static floating structures such as floating bridges and offshore runways that are in contact with the water surface from the floor and with the open air from the top, three types of interactions occur: the interaction of the structure with air, the interaction of the structure with water and Interaction of air with water. Due to the long length of such structures and approaching their natural frequencies to the standing wave frequencies (seiche frequencies), the analysis of the elastic behavior of the structure alone is not enough, but the structure-air-water interaction must be evaluated simultaneously in a system. Leading research addresses this issue and examines the behavior of an... 

    An Innovative Method for Vibration Analysis of Nanostructures using Equivalent Lattice Stiffness

    , M.Sc. Thesis Sharif University of Technology Ebadollahi, Mohammad Amin (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    In the following research a novel method for vibration analysis of nano-structures has been presented. This method is based on equalizing the lattice stiffness to a continuous model. In this method, an equivalent continuous system is considered for each atomic lattice and for the equivalent system a modified differential equation is presented. The governing equation of the continuous system is modified in such a way that the displacement field of the atomic lattice obtained by solving this differential equation gives similar responses to the displacement field of atomic lattice. This differential equation is derived from the Taylor expansion of the displacement field about the lattice atoms.... 

    Fluid Sloshing in Tanks with Perforated Baffles

    , M.Sc. Thesis Sharif University of Technology Zojaji, Mohammad Masoud (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    The issue of fluid sloshing in vessels is of paramount importance in aerospace engineering. To suppress sloshing Baffles are used and one kind of baffles is “Perforated Baffle” that is good in weight efficiency. When fluid passes through Perforated Baffle, the energy dissipates and sloshing induces. The purpose of this study is to develop a model for linear sloshing in presence of a Perforated Baffle in the vessel. In this project, the flow is modeled by potential function. The Flow may be rotational in the nearby of baffle due to viscosity when it passes through-out perforations, so Laplace's equation for the velocity potential is useless in this region. To simulate the flow in such zones,... 

    Investigation of Stability and Vibrations of Rotating Shaft with Intermediate Universal Connection

    , M.Sc. Thesis Sharif University of Technology Mohebi, Amir Hossein (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    In this research, the effect of the changes of the factors affecting the stability and vibrations of the rotating shaft with the middle universal joint has been investigated. Using the energy method, the rotor motion equations for two five-degree-of-freedom Jefkat rotors have been obtained. By considering the effect of system vibrations on the angle between the rotors and using the existing constraint relations at the connection point of the rotors and inserting them into the equations, finally the equation of motion of the investigated system has been obtained as seven degrees of freedom. Due to the variable speed of the output shaft, the coefficients of the degrees of freedom are dependent... 

    Vibration and Stability Analysis of Rotor with Initial Bow and Non-Linear Supports

    , M.Sc. Thesis Sharif University of Technology Mousavi Kani, Mohammad Reza (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    In this study, the effect of the initial bow on vibrations and stability of the rotor with nonlinear supports has been investigated. Using the energy method, the rotor’s equations of motion for the four-degree of freedom Jeffcott rotor and the elastic rotor assuming Tymoshenko beam relations are calculated. It is very important to study the initial bow as one of the common faults in rotating machines that has a great effect on system vibrations. A method was proposed to reduce rotor vibrations and balancing systems. Choosing a way to eliminate machine defects is one of the points considered by rotor dynamic engineers. Many factors can cause a bow in the rotor, some of the most important of... 

    Nonlinear Vibration Analysis of a Rotor with Nonlinear Pedestal by use of Jeffcott Model

    , M.Sc. Thesis Sharif University of Technology Farzanmehr, Younes (Author) ; Haddadpour, Hassan (Supervisor) ; Dehghani Firouzabadi, Rouhollah (Supervisor)
    Abstract
    The present research aims to achieve two major objectives in the Rotordynamic phenomenon. The first one is to study the linear and nonlinear dynamic characteristics of tilting pad journal bearings and calculating their dynamic coefficients like damping and stiffness, and the second one, studies the linear and nonlinear behavior of rotors standing on nonlinear pedestal, say nonlinear tilting pad journal bearing. By use of Partial Derivative method along with Perturbation method the linear dynamic coefficients are calculated for three different model of tilting pad journal bearing and these results are validated with the results presented by previous researches. The presented procedure is... 

    Optimization of Actuators Position of a Low Aspect Ratio Variable-camber Wing and Derivation of Its Aerodynamic

    , M.Sc. Thesis Sharif University of Technology Mohammadi Zadeh, Sina (Author) ; Dehghani Firouzabadi, Rouhollah (Supervisor) ; Haddadpour, Hassan (Supervisor)
    Abstract
    Morphing concepts can potentially improve the performance and fuel consumption of modern aircrafts. Smart materials can reduce the weight and complexity, and also are of the best choices to improve efficiency and reliability for realizing morphing wings. Developing of a simple model and optimization of smart piezocomposite actuators position of a thin wing with variable camber is considered. The goal is to gain desired properties in incompressible subsonic regime. Lifting surfaces of a composite wing are simplified using shell model. Keeping the problem simple, a piezocomposite patch is used to change the shell curvature. Basic modes are extracted from FEM software and behavior of bimorph... 

    Nonlinear Vibrations and Stability Analysis of Rotating Cylindrical Shells Conveying Annular Fluid Medium

    , Ph.D. Dissertation Sharif University of Technology Abdollahi Dehkordi, Rahim (Author) ; Dehghan Firouzabadi, Rohollah (Supervisor) ; Rahmanian, Mohammad (Co-Supervisor)
    Abstract
    In this study, stability as well as linear and nonlinear vibrations of coaxial rotating cylindrical shells conveying annular incompressible fluid medium are investigated. To this aim the inner isotropic and elastic rotating cylindrical shell along with the rigid and stationary outer cylinder are considered. Equations of motion for the inner cylinder are determined according to the Hamilton’s principle and using the Sanders-Koiter theory assumptions. In order to generalize the boundary condition implementation, some translational and rotational springs are attached to the boundaries at the mid-plane. The final system of equations are solved by means of the extended Galerkin method – being an... 

    Aeroelastic Topology Optimization of a Supersonic Wing

    , M.Sc. Thesis Sharif University of Technology Same, Hossein (Author) ; Hadadpour, Hassan (Supervisor) ; Dehghani Firouzabadi, Rouhollah (Supervisor) ; Noorian, Mohammad Ali (Co-Advisor)
    Abstract
    A series of algorithms developed for performing aeroelastic topology optimization applying stress constraint on a three dimentional structure of a supersonic wing. The structure modeled using finite element method by three dimentional solid hexahedron elements. Bi-directional evolutionary structural optimization method used for developing optimization algorithms. In order to apply supersonic aerodynamic loading and developing aeroelastic model algorithms, the piston aerodynamic theory utilized. In order to apply static pressure loading, the maximum angle of attack of the wing performance is proposed. Using developed MATLAB code by modeling and meshing wing structure in ABAQUS a software... 

    Numerical Simulation of Residual Stress Formation During Selective Laser Melting Process

    , M.Sc. Thesis Sharif University of Technology Maleki, Pedram (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    One of the major challenges in Additive Manufacturing is the creation of residual stresses due to the high temperature gradient in the solidification zone. This will cause problems such as cracks in the structure, metallurgical defects as well as deformation and dimensional accuracy reduction in the finished product. The purpose of this study is to perform mathematical modeling and computer simulation of the selective laser melting process (SLM) to predict these stresses as well as identify the effective parameters on this phenomenon. The conditions were adjusted in this model with the actual coefficients of the device. Additionally, the powder used in this project is Ti6Al4V material. By... 

    Synthesis and swelling behavior of a new superabsorbent hydrogel network based on polyacrylamide grafted onto salep [electronic resource]

    , Article Journal of Applied Polymer Science ; Volume 112, Issue 5, pages 2625–2633, 5 June 2009 Pourdjavadi, A. (Ali) ; Rezanejad Barajee, Ghasem ; Soleyman, Rouhollah ; Sharif University of Technology
    Abstract
    Synthesis and swelling behavior of a new superabsorbent hydrogel based on natural salep grafted with polyacrylamide is described. The new superabsorbent hydrogel biopolymer was synthesized via radical crosslinking and graft copolymerization of acrylamide monomer onto salep backbones. Regarding to the water absorption of hydrogel, the best synthesis condition is reported. FTIR spectroscopy and thermogravimetric analysis were used to confirm the structure of the final product and a mechanism for superabsorbent hydrogel formation was also suggested. After preparing the desired hydrogels based on optimum condition, several factors affecting the swelling behavior of hydrogel including pH of... 

    Phase Field Simulation of Microstructure Ternary Eutectic Solidification

    , M.Sc. Thesis Sharif University of Technology Dalvand, Mehdi (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    Physical and mechanical properties of cast alloys is partly a function of the morphology and volume fraction of phases from freezing. The microstructure of the eutectic solidification is function of physical properties (especially mobility and surface tension) and the volume fraction of phases involved in the evolution. The prediction of solidification microstructures will be very helpful for improving the mechanical properties of casting alloys and designing of new families of alloys. The theoretical study of the formation of eutectic microstructures is very difficult and almost impossible in general cases and empirical studies are expensive. The purpose of this study is to predict the... 

    Optimal Design of Parting Line in the Shape Casting Processes

    , M.Sc. Thesis Sharif University of Technology Pourfathi, Ali (Author) ; Tavakkoli, Rouhollah (Supervisor)
    Abstract
    More than 70 weight percentage of using parts in diverse industries (such as military, civil, automobile productions and etc.) are produceed by the casting processes. For each one of the casting procceses, mold cavity is requisite for arrived molten metal in the mold cavity to get eventuated as a solidified part. Based on mold ilk, if the mold is permanent, the cast part must be capable to be remoeved from the the mold inside. For the non-permanent mold (asssuming multi-piece and non-monolithic), if the model requires to be removed from the mold inside after molding and before casting, only model (no cast part) has to be moldable (why for removing the solidified cast part from the... 

    Production of Sn Base Composite Solder Reinforced by Nanoparticles Via Melt-spinning Technique

    , M.Sc. Thesis Sharif University of Technology Mohammadyari, Saeid (Author) ; Tavakkoli, Rouhollah (Supervisor)
    Abstract
    Lead-containing solder alloys in particular Sn-37Pb is the most common alloy used in electronics industry, this alloy has the good mechanical properties and excellent wetting properties and low prices. Recently, increasing environmental and health concerns over the toxicity of lead combined with strict legislation to ban the use of lead-based solders have provided an inevitable driving force for the development of lead-free solder alloys. A group of these lead-free solders are nanocomposite solders that because of having the reinforcement nano particles exhibit lots of unique properties, such as good mechanical and thermal properties. The aim of this research produce a new tin base... 

    A Phase-Field Model for Inhomogeneous Multiferroic Materials

    , M.Sc. Thesis Sharif University of Technology Jafari, Bahram (Author) ; Tavakoli, Rouhollah (Supervisor)
    Abstract
    In this thesis, by deliberately embedding “emplacements” in the system to locally break the inversion and the time reversal symmetries, the manifold of all possible microstructures is navigated in pursuit of the one that can give rise to maximal magnetoelectric effect mediated by elastic energy of piezoelectric-piezomagnetic phases via their interface --- needless to mention the low intensity of such an effect in single-phase multiferroics. The configuration with the maximal coupling is sought within the context of phase-field modeling. In order to numerically track the conserved dissipative dynamics of the interface (namely, the Cahn-Hilliard equation) --- that is nonlocal by the nature of... 

    Modeling on Mechanical Properties of Aluminum of 5xxx Series in Constrained Grooved Pressing Process

    , M.Sc. Thesis Sharif University of Technology Firouzabadi, Siavash (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Al-Mg alloys are used in many industrial fields, thus improvement of their mechanical properties is so important. Expressing mathematical models on the basis of physical and microstructural properties can be useful for this purpose. In this research, in order to study the microstructural evolutions and mechanical properties of the material, a dislocation based model and microstructural parameters such as grains and subgrains during plastic deformation and subsequent annealing are considered. In addition, a modification is used to make the model capable of justify the solute atom and temperature effect simultaneously. This makes the results to be more precise and accurate considering... 

    A modified model on solute alloying element effect in Al-Mg alloys: Mechanical properties and dislocation density evolutions

    , Article Materials and Design ; Volume 36 , 2012 , Pages 804-808 ; 02641275 (ISSN) Firouzabadi, S. S ; Kazeminezhad, M ; Sharif University of Technology
    2012
    Abstract
    A modified dislocation based model is introduced to explain the flow stress of Al-Mg alloys at different temperatures and strain rates considering solute alloying element concentration. The solute effect on flow stress is studied on the basis of storage and annihilation of dislocation. It is studied that how the increase of solute content can postpone the dislocation annihilation and how this can affect the storage phenomenon. It is found that the increasing of solute concentration can postpone the beginning of dislocation annihilation through deformation and also increase the critical strain that plateau occurs in plot of annihilation of dislocation versus shear strain. Thus, the plateau... 

    Cell-structure and flow stress investigation of largely strained non-heat-treatable Al-alloys using dislocation based model

    , Article Materials Science and Engineering A ; Volume 739 , 2019 , Pages 167-172 ; 09215093 (ISSN) Firouzabadi, S. S ; Kazeminezhad, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A severe plastic deformation is widely used to improve the mechanical properties of non-heat-treatable alloys. Thus, the investigation and modeling of microstructural evolutions of materials during large straining are of great importance. In this research, substructural evolutions of four different kinds of Al alloys namely Al-1Mn, Al-1Mg, Al-2.77Mg and Al-5Mg, have been studied using a dislocation based model and the mechanical properties of these alloys have been compared considering all microstructural parameters such as dislocation density, subgrain size, cell wall misorientation and the effect of alloying element. As a result, a simplified general equation has been expressed in order to...