Loading...
Search for: banaei--b
0.107 seconds

    Design & Fabrication of Regenerative Frequency Divider in Millimeter Wave Band

    , M.Sc. Thesis Sharif University of Technology Rezaei, Mohammad Reza (Author) ; Banaei, Ali (Supervisor)
    Abstract
    The frequency divider is one of the components of a frequency synthesizer. Regenerative frequency divider is one of the frequency division methods and is used in narrow band applications. In this thesis, the process of designing & fabricating Ka band and Ku band regenerative frequency dividers is reported. A bandwidth of 550MHz for the Ka band divider and 400MHz for the Ku band divider have been achieved. Multiple passive structures such as microstrip filters, Wilkinson power dividers and a waveguide-to-microstrip transition have been designed during the fabrication of the mentioned frequency dividers. According to the results of the simulations, the bandwidth of the waveguide-to-microstrip... 

    Theoretical and Experimental Study of Gas-Solid Fluidized Beds Dpm Approach

    , M.Sc. Thesis Sharif University of Technology Banaei, Mohammad (Author) ; Molaei Dehkordi, Asghar (Supervisor)
    Abstract
    Because of the importance of gas-solid fluidized beds in industrial plants, many efforts have been done for predicting their behavior up to now. Generally, there are two major attitudes for describing and simulating the hydrodynamics of fluidized beds, Eulerian-Eulerian methods and Eulerian-Lagrangian metods. Both of these approaches have their own advantages and disadvantages and a lot of studies have been done to understand the nature of gas-solid fluidized beds with aid of these models. Due to fewer presumptions in the basic structure of Eulerian-Lagrangian methods such as DEM in comparison with Eulerian-Eulerian methods like TFM, these models can predict the hydrodynamics of fluidized... 

    Design and Implementation of a 1-2 GHz Ultra Low Phase Noise Phase Locked Loop using SPD

    , M.Sc. Thesis Sharif University of Technology Abedanzadeh, Amir Hossein (Author) ; Banaei, Ali (Supervisor)
    Abstract
    In this thesis first of all we investigate phase noise and it's generation factors. Then we design and implement an ultra low phase noise oscillator. To do this, an ultra low phase noise oscillator which is tunable in 1-2GHz with 100MHz steps will be designed. The outline of the circuit is as follows: at the first we design a VCO which is ultra low phase noise and mechanically tunable in 1-2GHz by means of rotation of a handle. Then a phase locked loop will be built with the help of an ultra low phase noise OCXO at 100MHz and one SPD1 which generates harmonics of OCXO's output frequency. For the next, design and implementation of a 1.6GHz oscillator with fixed output frequency has been done.... 

    Design and Implementation of Wearable Sensor for Cardiac Arrhythmia Detection

    , M.Sc. Thesis Sharif University of Technology Banaei Kashani, Amir Ali (Author) ; Fakharzadeh Jahromi, Mohammad (Supervisor)
    Abstract
    Today, by emerging wearable technologies and digital health, it is possible to constantly monitor vital signals of people without time-consuming and costly referrals to medical centers. Applications of wearable sensors for health monitoring include electrocardiograms (ECG), blood pressure measurement, and blood sugar measurement, etc. One of the important fields of health monitoring is cardiac arrhythmia detection. Cardiac arrhythmia is any kind of anomalies in heart beat rhythm that can lead to serious damage to vital organs of the body. It is estimated that between 750 thousand to 1.5 million people are facing cardiac arrhythmia in Iran. Therefore, early detection of cardiac arrhythmia is... 

    Removal of naphthalene from aqueous solutions by phosphorus doped-titanium dioxide coated on silica phosphoric acid under visible light

    , Article Desalination and Water Treatment ; Volume 224 , 2021 , Pages 187-196 ; 19443994 (ISSN) Banaei, B ; Hassani, A. H ; Tirgir, F ; Fadaei, A ; Borghaei, S. M ; Sharif University of Technology
    Desalination Publications  2021
    Abstract
    In this research, titanium dioxide-phosphorus (TiO2-P) immobilized on silica phosphoric acid (SPA) was prepared by a simple modified sol–gel method with SPA as a precursor instead of phosphoric acid. TiO2-P thin film photocatalyst immobilized on SPA as a novel high-efficiency photocatalyst was investigated to remove naphthalene as a toxic compound from wastewater. The novel resulting photocatalyst were characterized by energy-dispersive X-ray (EDX) and X-ray diffraction pattern revealed nano-photocatalyst TiO2-P with the average size of 15–20 nm. EDX analysis showed the presence of phosphorus elements in the crystalline structure of TiO2 and diffuse reflectance spectroscopy showed the energy... 

    Graphene Effect on the Rheological Behaviour of Drilling Fluid

    , M.Sc. Thesis Sharif University of Technology Banaei, Mohammad Hossein (Author) ; Ramezani Saadat, Ahmad (Supervisor) ; Jamshidi, Saeed (Supervisor)
    Abstract
    Since the early 90s, nanotechnology has contributed to several developments in a wide range of Science and industry such as medicine, Physics, Chemistry, Aerospace, electronics and Biology. In recent years, nanotechnology has also made development in the oil and gas industry. The drilling fluid is already one of the most important parts in drilling operation.The physical properties of a mud, rheological properties and minimize fluid invasion into the formation with perfect mudcake are important to assist in optimizing results. Nano-materials as one of the achievements of recent years are effective in achieving these purposes. To obtain the above properties, a variety of polymers as... 

    Genome Engineering of Bacillus Subtilis Using CRISPR Technology to Overproduce Protease Production

    , M.Sc. Thesis Sharif University of Technology Sabouri, Zahra (Author) ; Roostaazad, Reza (Supervisor) ; Banaei Moghaddam, Ali Mohammad (Supervisor)
    Abstract
    Enzymes are an important part of detergents, they reduce the activation energy of the reaction and thus increase the efficiency of the process. Protease enzyme is one of the most common enzymes in detergents. Bacillus strain is the most important strain in the production of this enzyme and among the species of Bacillus, Bacillus subtilis is the most used. Bacillus subtilis is a gram-positive, rod-shaped bacterium. This bacterium is considered a non-pathogenic cell that has the ability to form spores and prevent death and damage in harsh conditions. In this study, CRISPR system was used to modify the genome of Bacillus subtilis ATCC 6633 in order to increase alkaline protease. To increase the... 

    Increase Production of the Enzyme by Cell Genetic Modification

    , M.Sc. Thesis Sharif University of Technology Faghihi, Farhad (Author) ; Roosta Azad, Reza (Supervisor) ; Banaei Moghaddam, Ali Mohammad (Supervisor)
    Abstract
    Genetic engineering of cells has been one of the most effective ways to increase protein production in wild strains. Among the various genetic engineering techniques, the CRISPR/Cas9 system that directly edits the cell chromosome, yielding greater efficiency and easier operation. In this study, we used this system to modify the genome of Bacillus subtilis ATCC 6633 to increase the production of extracellular alkaline protease enzyme. Alkaline protease enzyme has many applications in different industries, but in this study, the application of this enzyme in the detergent industry has been considered. To increase the production of this enzyme, we disrupted and prevented the gene responsible... 

    Bubble splitting in a pseudo-2D gas-solid fluidized bed for geldart B-type particles

    , Article Chemical Engineering and Technology ; Vol. 37, Issue. 12 , December , 2014 , PP. 2096-2102 ; ISSN: 09307516 Movahedirad, S ; Dehkordi, A. M ; Molaei, E. A ; Haghi, M ; Banaei, M ; Kuipers, J. A. M ; Sharif University of Technology
    2014
    Abstract
    Bubble splitting in 2D gas-solid freely bubbling fluidized beds is experimentally investigated using digital image analysis. The quantitative results can be applied for the development of a new breakage model for bubbly fluidized beds, especially discrete bubble models. The variation of splitting frequency with bubble diameter, new resulting bubble volumes, positions, and also the assumptions of mass and momentum conservation for bubbles after breakage are studied in detail. Small bubbles are found to be more stable than large ones and nearly all mother bubbles split into two almost equally sized daughter bubbles. The momentum of gas bubbles in the vertical direction remains approximately... 

    Bubble size distribution in two-dimensional gas-solid fluidized beds

    , Article Industrial and Engineering Chemistry Research ; Volume 51, Issue 18 , 2012 , Pages 6571-6579 ; 08885885 (ISSN) Movahedirad, S ; Molaei Dehkordi, A ; Banaei, M ; Deen, N. G ; Van Sint Annaland, M ; Kuipers, J. A. M ; Sharif University of Technology
    2012
    Abstract
    In this article, the digital image analysis (DIA) technique has been used to study the bubble size and bubble size distribution evolution in a pseudo-two-dimensional gas-solid fluidized bed. In addition, a numerical discrete bubble model (DBM) based on the bubble-bubble interactions was developed and the model predictions were compared with the experimental data. The developed model can predict the bubble size and bubble size distribution through the bed height and the lateral distribution of bubbles. Comparison between model predictions and the result of DIA measurements shows that bubble breakage has a significant effect on the bubble size distribution especially at heights far from the... 

    Improving Subtilisin Production by Engineering the Regulatory Regions of aprE in Bacillus Subtilis

    , M.Sc. Thesis Sharif University of Technology Pourmohammad, Mohammad Javad (Author) ; Banaei Moghaddam, Ali Mohammad (Supervisor) ; Yaghmaei, Soheyla (Supervisor) ; Roosta Azad, Reza (Supervisor)
    Abstract
    Industrial enzymes can generally be classified into three groups: carbohydrases, proteases and lipases, which account for a major part of the global enzyme trade. Proteases, in particular, have always been extensively studied and investigated due to their widespread use in various industries, such as food, pharmaceutical, chemical, and agricultural sectors. Proteases are a group of proteolytic enzymes that break down proteins and peptides into their constituent amino acids by hydrolyzing peptide bonds. Among the family of proteases, alkaline serine proteases have special biocatalytic abilities in both aqueous and organic environments. Their suitable resistance in alkaline environments and... 

    Microwave-induced Cannizzaro reaction over neutral γ-alumina as a polymeric catalyst [electronic resource]

    , Article Reactive and Functional Polymers ; 01/2002; 51(1):49-53 Pourjavadi, A. (Ali) ; Soleimanzadeh, B ; Marandi, G. B
    Abstract
    γ-Alumina is used to catalyze the Cannizzaro reaction in the absence of any base under microwave irradiation in high yields. In the case of terephthalaldehyde the reaction is carried out with high selectivity  

    SnCl4/SiO2: an efficient heterogeneous alternative for one-pot synthesis of β-acetamidoketones

    , Article Journal of the Chinese Chemical Society ; Volume 56, Issue 2 , 2009 , Pages 386-391 ; 00094536 (ISSN) Mirjalili, B. B. F ; Mahmoodi Hashemi, M ; Sadeghi, B ; Emtiazi, H ; Sharif University of Technology
    2009
    Abstract
    Enolizable ketones have been reacted in a one-pot method with aromatic aldehydes, acetyl chloride and acetonitrile at room temperature in the presence of SnCl4/SiO2 to furnish the corresponding β-acetamidoketones in improved yields. Acetylation of an aromatic hydroxyl group was observed while using 4-hydroxybenzaldehyde or vanillin and the corresponding β-acetamidoketones were isolated in an excellent yield  

    Turbulent flow in converging nozzles, part one: Boundary layer solution

    , Article Applied Mathematics and Mechanics (English Edition) ; Volume 32, Issue 5 , 2011 , Pages 645-662 ; 02534827 (ISSN) Maddahian, R ; Farhanieh, B ; Firoozabadi, B ; Sharif University of Technology
    2011
    Abstract
    The boundary layer integral method is used to investigate the development of the turbulent swirling flow at the entrance region of a conical nozzle. The governing equations in the spherical coordinate system are simplified with the boundary layer assumptions and integrated through the boundary layer. The resulting sets of differential equations are then solved by the fourth-order Adams predictor-corrector method. The free vortex and uniform velocity profiles are applied for the tangential and axial velocities at the inlet region, respectively. Due to the lack of experimental data for swirling flows in converging nozzles, the developed model is validated against the numerical simulations. The... 

    Numerical investigation of steady density currents flowing down an incline using v2̄ - F turbulence model

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 129, Issue 9 , 2007 , Pages 1172-1178 ; 00982202 (ISSN) Khakzad, N ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2007
    Abstract
    The governing equations of two-dimensional steady density currents are solved numerically using a finite volume method. The v2̄-f turbulence model, based on standard k - s model, is used for the turbulence closure. In this method, all Reynolds stress equations are replaced with both a transport equation for v2̄ and an elliptic relaxation equation for f, a parameter closely related to the pressure strain redistribution term. The Simple-C procedure is used for pressure-velocity coupling. In addition, Boussinesq's approximation is used to obtain the momentum equation. The computed height of the progressive density current is compared to the measured data in the literature, resulting in good... 

    Numerical simulation of turbid-density current using v2̄ - f turbulence model

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, FL, 5 November 2005 through 11 November 2005 ; Volume 261 FED , 2005 , Pages 619-627 ; 08888116 (ISSN); 0791842193 (ISBN); 9780791842195 (ISBN) Mehdizadeh, A ; Firoozabadi, B ; Farhanieh, B ; Sharif University of Technology
    2005
    Abstract
    The deposition behavior of fine sediment is an important phenomenon, and yet unclear to engineers concerned about reservoir sedimentation. An elliptic relaxation turbulence model (v2̄ - f model) has been used to simulate the motion of turbid density currents laden whit fine solid particles. During the last few years, the v2̄ - f turbulence model has become increasingly popular due to its ability to account for near-wall damping without use of damping functions. In addition, it has been proved that the v2̄ - f model to be superior to other RANS methods in many fluid flows where complex flow features are present. Due to low Reynolds number turbulence of turbidity current,(its critical Reynolds... 

    Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media

    , Article Rheologica Acta ; Volume 55, Issue 11-12 , 2016 , Pages 935-955 ; 00354511 (ISSN) Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    In this paper, creeping motion of a viscoelastic drop falling through a Newtonian fluid is investigated experimentally and analytically. A polymeric solution of 0.08 % xanthan gum in 80:20 glycerol/water and silicon oil is implemented as the viscoelastic drop and the bulk viscous fluids, respectively. The shape and motion of falling drops are visualized using a high speed camera. The perturbation technique is employed for both interior and exterior flows, and Deborah and capillary numbers are considered as perturbation parameters up to second order. The product of Deborah and capillary numbers is also used as a perturbation parameter to apply the boundary condition on the deformation on the... 

    Minimizing uplink delay in delay-sensitive 5G CRAN platforms

    , Article 2nd IEEE 5G World Forum, 5GWF 2019, 30 September 2019 through 2 October 2019 ; 2019 , Pages 154-160 ; 9781728136271 (ISBN) Ataie, A ; Kanaanian, B ; Khalaj, B. H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we consider the problem of minimizing the uplink delays of users in a 5G cellular network. Such cellular network is based on a Cloud Radio Access Network (CRAN) architecture with limited fronthaul capacity, where our goal is to minimize delays of all users through an optimal resource allocation. Earlier works minimize average delay of each user assuming same transmit power for all users. Combining Pareto optimization and Markov Decision Process (MDP), we show that every desired balance in the trade-off among infinite-horizon average-reward delays, is achievable by minimizing a properly weighted sum delays. In addition, we solve the problem in two realistic scenarios;... 

    Analytical solution for creeping motion of a viscoelastic drop falling through a Newtonian fluid

    , Article Korea Australia Rheology Journal ; Vol. 26, issue. 1 , 2014 , pp. 91-104 ; ISSN: 1226119X Vamerzani, B. Z ; Norouzi, M ; Firoozabadi, B ; Sharif University of Technology
    2014
    Abstract
    In this paper, an analytical solution for steady creeping motion of viscoelastic drop falling through a viscous Newtonian fluid is presented. The Oldroyd-B model is used as the constitutive equation. The analytical solutions for both interior and exterior flows are obtained using the perturbation method. Deborah number and capillary numbers are considered as the perturbation parameters. The effect of viscoelastic properties on drop shape and motion are studied in detail. The previous empirical studies indicated that unlike the Newtonian creeping drop in which the drop shape is exactly spherical, a dimpled shape appears in viscoelastic drops. It is shown that the results of the present... 

    Feedback bit reduction for antenna selection methods in wireless systems

    , Article 2005 13th IEEE International Conference on Networks jointly held with the 2005 7th IEEE Malaysia International Conference on Communications, Kuala Lumpur, 16 November 2005 through 18 November 2005 ; Volume 1 , 2005 , Pages 229-233 ; 1424400007 (ISBN); 9781424400003 (ISBN) Shariatpanahi, P ; Babadi, B ; Hossein Khalaj, B ; Sharif University of Technology
    2005
    Abstract
    A well known method to reduce the intrinsic complexity of Multiple Input Multiple Output (MIMO) systems is to choose a subset of available antennas which have stronger links than the others, in order to perform the specified MIMO algorithm. The data resulted from the antenna selection process (at the receiver side) is sent back to the transmitter side via a feedback channel. There seems to be a need to reduce the number of feedack bits, specially when the number of antennas is not small. In this paper, we investigate the problem of reducing the number of feedback bits in antenna selection techniques. We've proposed two methods using vector quantization techniques to perform feedback bit...