Loading...
Search for: bahrami--h
0.005 seconds

    Investigation of underground gas storage in a partially depleted naturally fractured gas reservoir

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 29, Issue 1 , 2010 , Pages 103-110 ; 10219986 (ISSN) Jodeyri Entezari, A ; Azin, R ; Nasiri, A ; Bahrami, H ; Sharif University of Technology
    Abstract
    In this work, studies of underground gas storage (UGS) were performed on a partially depleted, naturally fractured gas reservoir through compositional simulation. Reservoir dynamic model was calibrated by history matching of about 20 years of researvoir production. Effects of fracture parameters, i.e. fracture shape factor, fracture permeability and porosity were studied. Results showed that distribution of fracture density affects flow and production of water, but not that of gas, through porous medium. However, due to high mobility of gas, the gas production and reservoir average pressure are insensitive to fracture shape factor. Also, it was found that uniform fracture permeability... 

    Effects of nano graphene oxide as support on the product properties and performance of Ziegler-Natta catalyst in production of UHMWPE

    , Article Polymers for Advanced Technologies ; Volume 26, Issue 4 , 2015 , Pages 315-321 ; 10427147 (ISSN) Kheradmand, A ; Ramazani, S. A ; Khorasheh, F ; Baghalha, M ; Bahrami, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    The synthesis of mono- and bi-supported Ziegler-Natta catalysts using magnesium etoxide Mg(OEt)2 and graphene oxide (GO) as catalyst support for production of Ultra High Molecular Weight Polyethylene (UHMWPE) is reported in this investigation. Nano-graphene oxide was prepared by the modified Hummer's method and its structure was analyzed by XRD and FTIR indicating the presence of hydroxyl groups on graphene oxide and the formation of an exfoliated structure. The activity of TiCl4/Mg(OEt)2, TiCl4/Mg(OEt)2-GO, and TiCl4/GO catalysts in terms of grams of PE produced per mmol of Ti per hour was experimentally obtained for catalysts with different ratios of co-catalyst (triisobutylaluminium) to... 

    Preparation and study of bi-supported Ziegler-Natta catalyst with nano graphene oxide and magnesium ethoxide supports for polymerization of polyethylene

    , Article Polymer Science - Series B ; Volume 58, Issue 3 , 2016 , Pages 271-277 ; 15600904 (ISSN) Kheradmand, A ; Ramazani SaadatAbadi, A ; Khorasheh, F ; Baghalha, M ; Bahrami, H ; Sharif University of Technology
    Maik Nauka-Interperiodica Publishing  2016
    Abstract
    In this study, we have reported the preparation of bi-supported Ziegler-Natta catalysts using magnesium ethoxide and graphene oxide as support. The polymerization process was carried out in slurry phase using triisobutylaluminum as a co-catalyst.The XRD analysis of TiCl4/graphene oxide/Mg(OEt)2 catalyst demonstrated that the space between the layers of graphene oxide had increased to 0.2 nm.The catalyst was characterized by XPS, BET, BJH, SEM, and TGA. The catalyst activity was studied for various Al/Ti molar ratios, and the catalyst activity was optimum at Al/Ti molar ratio of 315. © 2016, Pleiades Publishing, Ltd