Loading...
Search for: bagheri-hariri--m
0.011 seconds

    Synthesis and characterization of gold nanotube/nanowire-polyurethane composite based on castor oil and polyethylene glycol

    , Article Materials Science and Engineering C ; Vol. 42 , 2014 , pp. 341-349 ; ISSN: 09284931 Ganji, Y ; Kasra,M ; Salahshour Kordestani, S ; Bagheri Hariri, M ; Sharif University of Technology
    Abstract
    Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell... 

    Corrosion and time dependent passivation of Al 5052 in the presence of H2O2

    , Article Metals and Materials International ; Volume 22, Issue 4 , 2016 , Pages 609-620 ; 15989623 (ISSN) Batmanghelich, F ; Bagheri Hariri, M ; Sharifi Asl, S ; Yaghoubinezhad, Y ; Mortazavi, G ; Seo, Y ; Sharif University of Technology
    Korean Institute of Metals and Materials  2016
    Abstract
    Corrosion and time–dependent oxide film growth on AA5052 Aluminum alloy in 0.25M Na2SO4 solution containing H2O2 was studied using electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometric and open circuit potential monitoring. It was found that sequential addition of H2O2 provokes passivation of AA5052 which ultimately thickens the oxide film and brings slower corrosion rates for AA5052. H2O2 facilitates kinetics of oxide film growth on AA 5052 at 25° and 60 °C which is indicative of formation of a thick barrier film that leads to an increment in the charge transfer resistance. Pitting incubation time increases by introduction of H2O2 accompanied by lower... 

    Photoelectrochemical water-splitting using CuO-Based electrodes for hydrogen production: a review

    , Article Advanced Materials ; Volume 33, Issue 33 , 2021 ; 09359648 (ISSN) Siavash Moakhar, R ; Hosseini Hosseinabad, S. M ; Masudy Panah, S ; Seza, A ; Jalali, M ; Fallah Arani, H ; Dabir, F ; Gholipour, S ; Abdi, Y ; Bagheri Hariri, M ; Riahi Noori, N ; Lim, Y. F ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods,...