Loading...
Search for: akbarzadeh--a
0.007 seconds
Total 60 records

    Characterization of dynamic recrystallization parameters for a low carbon resulfurized free - cutting steel

    , Article Materials and Design ; Vol. 53 , January , 2014 , pp. 910-914 ; ISSN: 02641275 Naghdy, S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    The hot working behavior of a low carbon resulfurized free-cutting steel was studied by hot compression tests at temperature range of 1000-1200°C with strain rates of 0.001 to 1s-1. The conventional parameters such as activation energy of deformation and relationships between flow stress/strain and Zener-Hollomon parameter were determined. Both the critical stress and strain for initiation of dynamic recrystallization (DRX) were determined using: (1) strain hardening rate versus stress curve, (2) the natural logarithm of strain hardening rate versus strain curve, and (3) the constitutive equations. In summary, for low carbon resulfurized free - cutting steels, the activation energy of... 

    Fabrication of aluminium matrix composites reinforced by submicrometre and nanosize Al 2O 3 via accumulative roll bonding

    , Article Materials Science and Technology (United Kingdom) ; 2012 , Pages 1233-1240 ; 02670836 (ISSN) Rezayat, M ; Akbarzadeh, A ; Sharif University of Technology
    2012
    Abstract
    Aluminium matrix composites reinforced with submicrometre and nanosize Al 2O 3 particles were successfully manufactured in the form of sheets through eight cycles of accumulative roll bonding process. The mechanical properties of the produced composite are compared with accumulative roll bonded commercially pure aluminium. It is shown that only 1 vol.-% of submicrometre or nanosize alumina particles as reinforcement in the structure can significantly improve the yield and ultimate tensile strengths. Scanning electron microscopy revealed that particles have a random and uniform distribution in the matrix especially in the less volume fraction of alumina particles, and strong mechanical... 

    Theoretical model for evaluating the threshold reduction in roll bonding of Al/Al 2O 3/Al laminations

    , Article Metals and Materials International ; Volume 18, Issue 5 , 2012 , Pages 827-832 ; 15989623 (ISSN) Rezayat, M ; Akbarzadeh, A ; Sharif University of Technology
    Springer  2012
    Abstract
    Roll bonding is the most important stage of the accumulative roll bonding process, which is used to produce high strength composites. The presence of a particle layer at the interface alters the bonding condition and increases the threshold reduction for the commencement of bonding. In this study, the bonding mechanism in presence of powder at the interface is analyzed and a theoretical model is proposed to predict the required threshold reduction in warm roll bonding of commercially pure aluminum sheets as a function of amount of alumina particles at the interface. The model considers the rolling parameters and the effect of amount and size of particles by defining some constants, which are... 

    Prediction of formability of tailor welded blanks by modification of MK model

    , Article International Journal of Mechanical Sciences ; Volume 61, Issue 1 , 2012 , Pages 44-51 ; 00207403 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    A new model is proposed to predict the Forming Limit Diagrams (FLDs) of Tailor Welded Blanks (TWBs). This model is derived by modification of the Marciniak and Kuczynski (MK) analysis and imposing the weld constraints to deformation state of each blank at each strain increment. Based on this model, it is possible to predict the strains of both weaker and stronger blanks once necking occurs. By comparison to the experimental results of two laser welded TWBs, it is demonstrated that this model provides a close prediction of FLD of TWBs, when necking occurs far from the weld line at a region out of HAZ (Heat Affected Zone) and close to it so that it is affected by the weld line constraints  

    Fabrication of high-strength al/sicp nanocomposite sheets by accumulative roll bonding

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 43, Issue 6 , 2012 , Pages 2085-2093 ; 10735623 (ISSN) Rezayat, M ; Akbarzadeh, A ; Owhadi, A ; Sharif University of Technology
    2012
    Abstract
    Accumulative roll bonding (ARB) was successfully used as a severe plastic deformation method to produce Al-SiC nanocomposite sheets. The effects of process pass and amount of SiC content on microstructure and mechanical properties of the composites are investigated. As expected, production of ultrafine grain structures by the ARB process as well as nanosize particulate reinforcements in the metal matrix composite (MMC) resulted in excellent mechanical properties. According to the results of the tensile tests, it is shown that the yield and tensile strengths of the composite sheet increased with the number of ARB cycles without saturation at the last cycles. Scanning electron microscopy (SEM)... 

    Bonding behavior of Al-Al2O3 laminations during roll bonding process

    , Article Materials and Design ; Volume 36 , 2012 , Pages 874-879 ; 02641275 (ISSN) Rezayat, M ; Akbarzadeh, A ; Sharif University of Technology
    2012
    Abstract
    Accumulative roll bonding (ARB) is used as a novel method to produce particle reinforced metal matrix composites (MMCs). Roll bonding of the sheets with layers of powder on their surfaces is the main stage in this process and it has been found that quality of the bonding has an important role in properties of the product. In this work, the behavior of alumina particles layer at interface during the rolling is investigated and the effects of particle size and amount of particle at interface on bonding of the commercial pure aluminum sheets are also studied. The results of peeling test indicate that presence of the powder at interface reduces the bond strength. However, it is shown that by... 

    Production of high strength Al-Al 2O 3 composite by accumulative roll bonding

    , Article Composites Part A: Applied Science and Manufacturing ; Volume 43, Issue 2 , February , 2012 , Pages 261-267 ; 1359835X (ISSN) Rezayat, M ; Akbarzadeh, A ; Owhadi, A ; Sharif University of Technology
    Abstract
    Recently accumulative roll bonding has been used as a novel method to produce particle reinforced metal matrix composites. In this study, aluminum matrix composite reinforced by submicron particulate alumina was successfully produced and the effects of number of ARB cycles and the amount of alumina content on the microstructure and mechanical properties of composites were investigated. According to the results of tensile tests, it is shown that the yield and tensile strengths of the composite are increased with the number of ARB cycles. Scanning electron microscopy (SEM) reveals that particles have a random and uniform distribution in the matrix by the ARB cycles and a strong mechanical... 

    Fabrication of copper/aluminum composite tubes by spin-bonding process: Experiments and modeling

    , Article International Journal of Advanced Manufacturing Technology ; Volume 54, Issue 9-12 , November , 2011 , Pages 1043-1055 ; 02683768 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    2011
    Abstract
    The aim of this work is to produce two layered thin-walled Cu/Al composite tube by the spin-bonding process. The process is utilized to bond the aluminum tube into the copper one at thickness reductions of 20-60% and process temperatures of 25°C, 130°C, and 230°C. The bond strength is measured by T-peeling test, and the bond interfaces are examined by metallography and scanning electron microscopy (SEM). The results show that after a threshold thickness reduction of about 30%, the bond strength increased with the amount of deformation. SEM fractography of the peel surfaces confirms that the copper oxide film is broken in a shear manner during deformation. Severe shear strains applied during... 

    Bond strength and mechanical properties of three-layered St/AZ31/St composite fabricated by roll bonding

    , Article Materials and Design ; Volume 88 , 2015 , Pages 880-888 ; 02641275 (ISSN) Abedi, R ; Akbarzadeh, A ; Sharif University of Technology
    2015
    Abstract
    The aim of this research is bonding of three-layered St/AZ31/St composite by roll-bonding process. The roll-bonding process was performed at three preheating temperatures, 340, 400 and 450°C, with thickness reduction of 30 to 68% and different thicknesses of intermediate layer (AZ31). In order to improve the bonding strength, the as-rolled specimens were annealed at constant temperature of 375°C. For evaluation of bond strength and investigating the formation of a diffusion layer, the results of peel test and microscopic images were studied. Tensile specimens were prepared along the rolling direction to measure the mechanical properties of the composite. The results showed that by increasing... 

    Effect of finishing temperature on mechanical properties of a Nb-microalloyed steel sheet

    , Article Advanced Materials Research, 17 September 2010 through 19 September 2010 ; Volume 129-131 , 2010 , Pages 1022-1028 ; 10226680 (ISSN) ; 9780878492435 (ISBN) Mirahmadi Khaki, D ; Akbarzadeh, A ; Abedi, A ; Sharif University of Technology
    Abstract
    Thermo mechanical processing and controlled rolling of microalloyed steel sheets are affected by several factors. In this investigation, finishing temperature of rolling which is considered as the most effective parameters on the final mechanical properties of hot rolled products has been studied. For this purpose, three different finishing temperatures of 950, 900 and 850 °C below the non-recrystallization temperature and one temperature of 800 °C in the intercritical range were chosen. It is observed that decreasing the finishing temperature causes increase of strength and decrease of total elongation. This is accompanied by more grain refinement of microstructure and the morphology was... 

    Accumulative spin-bonding (ASB) as a novel SPD process for fabrication of nanostructured tubes

    , Article Materials Science and Engineering A ; Volume 528, Issue 1 , November , 2010 , Pages 180-188 ; 09215093 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    2010
    Abstract
    A novel SPD process for manufacturing of high strength tubes and cylinders by accumulative spin-bonding (ASB) is proposed. It is demonstrated that due to incremental deformation in this process, high strain rate without considerable temperature rise is achieved. This is accompanied with a high value of Zener-Hollomon parameter as a characteristic of this SPD process. ASB was applied to a commercially pure aluminum up to four cycles and its effects on the microstructure and mechanical properties were examined by optical microscopy, TEM, EBSD, microhardness and tension tests. The results show that ultra-fine grains are developed during the process by formation of subgrains at early stages... 

    Development of nanostructure in AZ31 magnesium alloy during accumulative roll bonding process

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 225-231 ; 17469392 (ISSN) Sadeghi, A ; Akbarzadeh, A ; Sharif University of Technology
    2010
    Abstract
    Accumulative roll bonding (ARB) is one of the effective severe plastic deformation methods for developing very fine grained nanostructures. In the present work, grain refinement and microstructural changes of magnesium AZ31 alloy during ARB process was investigated. Sheet specimens up to 256 cold welded layers (eight ARB cycles) were prepared. Evolution of the microstructure was observed using optical microscopy. It is shown that various mechanisms such as rotational recrystallisation (RRX) and twinning are involved in grain refinement at different passes. Increasing the number of ARB cycles leads to an ultra fine grain (UFG) microstructure (almost 500 nm) surrounded by nanoscale grain zones... 

    A novel spin-bonding process for manufacturing multilayered clad tubes

    , Article Journal of Materials Processing Technology ; Volume 210, Issue 3 , 2010 , Pages 510-517 ; 09240136 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    2010
    Abstract
    Utilizing the so-called tube spinning, a cold-bonding process entitled as "spin-bonding" is developed to produce seamless thin-walled clad tubes and cylinders. By this method, two layers of AA 1050 tubes were successfully bonded together to form a clad tube at room temperature. Based on mechanical aspects of the tube spinning process, the mechanism of spin-bonding is explained in two stages: surface preparation before occurrence of a stable bond and bond strengthening thereafter. The effects of process temperature, thickness reduction, feed rate and roller attack angle as the parameters of tube spinning on the bond strength are studied. It is shown that the bond strength increases by... 

    Roll bonding of AA5052 and polypropylene sheets: bonding mechanisms, microstructure and mechanical properties

    , Article Journal of Adhesion ; 2016 , Pages 1-25 ; 00218464 (ISSN) Rezaei Anvar, B ; Akbarzadeh, A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Structural, microstructural and mechanical properties in roll bonding of AA5052 and polypropylene sheets have been evaluated in this study. The surface roughness of the AA5052 sheets, rolling temperature and the surface energy of polymer were selected as the bonding variables. The findings indicated that an increase in the surface energy of polypropylene by grafting maleic anhydride would result in higher bonding strength due to chemical interaction between the AA5052 and the maleic anhydride grafted polypropylene (PP-g-MAH). In fact, this reaction caused the formation of an interphase layer at the polymer side of the interface and the diffusion of aluminum into the PP-g-MAH layer. It was... 

    Roll bonding of AA5052 and polypropylene sheets: bonding mechanisms, microstructure and mechanical properties

    , Article Journal of Adhesion ; Volume 93, Issue 7 , 2017 , Pages 550-574 ; 00218464 (ISSN) Rezaei Anvar, B ; Akbarzadeh, A ; Sharif University of Technology
    Taylor and Francis Inc  2017
    Abstract
    Structural, microstructural and mechanical properties in roll bonding of AA5052 and polypropylene sheets have been evaluated in this study. The surface roughness of the AA5052 sheets, rolling temperature and the surface energy of polymer were selected as the bonding variables. The findings indicated that an increase in the surface energy of polypropylene by grafting maleic anhydride would result in higher bonding strength due to chemical interaction between the AA5052 and the maleic anhydride grafted polypropylene (PP-g-MAH). In fact, this reaction caused the formation of an interphase layer at the polymer side of the interface and the diffusion of aluminum into the PP-g-MAH layer. It was... 

    Experimental investigation and crystal plasticity-based prediction of AA1050 sheet formability

    , Article Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture ; Volume 231, Issue 8 , 2017 , Pages 1341-1349 ; 09544054 (ISSN) Hajian, M ; Assempour, A ; Akbarzadeh, A ; Sharif University of Technology
    SAGE Publications Ltd  2017
    Abstract
    This article presents a crystal plasticity methodology to evaluate the AA1050 sheet formability. In order to determine the orientation distribution of the crystals, initial texture of the material is measured through X-ray diffraction technique. Also, the stress-strain behavior of the material is determined by performing tensile test. In order to simulate the path-dependent crystal plasticity behavior of body-centered cubic crystal structures, a UMAT subroutine that employs the rate-dependent crystal plasticity model along with the power law hardening was developed previously by the authors and linked to the finite element software ABAQUS. This subroutine was further developed to simulate... 

    Development of equations for strain rate sensitivity of UFG aluminum as a function of strain rate

    , Article International Journal of Plasticity ; Volume 90 , 2017 , Pages 167-176 ; 07496419 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    Strain rate sensitivity (m-value) of ultrafine grain (UFG) AA 1050 and AA 5052 sheets processed by accumulative roll-bonding is investigated versus strain rate by stress relaxation (SR) test at ambient temperature. The results show a weak viscous nature of deformation for AA 5052 specimens as compared to AA 1050 ones. So that much less stress relaxation and negligible strain rate sensitivity are obtained for this material due to dislocation and grain boundary mobility limitation caused by Mg solute atoms. In order to formulate strain rate sensitivity of UFG aluminum as a function of strain rate, three phenomenological and two empirical models are developed and assessed by the experimental... 

    Effect of temper rolling and subsequent annealing on texture development and magnetic permeability of semi-processed electrical steel with 2.3 wt.% Si

    , Article International Journal of Materials Research ; Volume 109, Issue 10 , 2018 , Pages 930-937 ; 18625282 (ISSN) Ahmadian, P ; Akbarzadeh, A ; Sharif University of Technology
    Carl Hanser Verlag  2018
    Abstract
    The effect of temper rolling and subsequent annealing on texture development and magnetic properties of semi-processed non grain oriented electrical steel has been investigated. The result shows that 5 % temper rolling and final annealing at 850 8C resulted in strong a-fiber component. The etch-pit technique shows that strain induced boundary migration is responsible for new texture component augmentation. Vibrating sample magnetometery reveals that maximum and minimum magnetic permeability are related to rolling and transverse directions, respectively. Average magnetic permeability is improved to some extent as a result of temper rolling and subsequent annealing. © Carl Hanser Verlag GmbH &... 

    Constitutive equation and FEM analysis of incremental cryo-rolling of UFG AA 1050 and AA 5052

    , Article Journal of Materials Processing Technology ; Volume 255 , 2018 , Pages 35-46 ; 09240136 (ISSN) Mohebbi, M. S ; Akbarzadeh, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, ultrafine grained aluminum sheets AA1050 and AA5052 are incrementally cryo-rolled after precooling in liquid nitrogen. Cryogenic deformation is considered as an effective approach to postpone saturation of the grain refinement by conventional severe plastic deformation. However, for a quantitative understanding of the resulted microstructure and mechanical properties, accurate values of the deformation parameters (strain, strain rate and temperature) are needed. The aim of this study is, therefore, to find values of the applied cryo-rolling parameters. As the experimental measurements of parameters such as temperature are infeasible in the thin specimens, a FEM simulation is... 

    Role of second phase particles on microstructure and texture evolution of ARB processed aluminium sheets

    , Article Materials Science and Technology ; Volume 25, Issue 5 , 2009 , Pages 625-631 ; 02670836 (ISSN) Pirgazi, H ; Akbarzadeh, A ; Sharif University of Technology
    2009
    Abstract
    The accumulative roll bonding (ARB) process was carried out on a high purity alloy (AA1100) and a particle containing aluminium alloy (AA3003) for up to eight cycles. The electron backscattered diffraction (EBSD) method was utilised to investigate the microstructural and microtextural evolution in ARB processed sheets. The results indicate that the lack of second phase particles in pure aluminium hinders grain refinement and leads to the formation of unrefined bands, which results in the increase of the overall texture intensity and the development of a strong texture. Asubmicrometre grain structure in this alloy develops at the final stages of the process. It was also found that the...